1. When \(2^{301}\) is divided by 5, the least positive remainder is:
(a) 4 (b) 8 (c) 2 (d) 6

2. If \(\omega\) is a complex cube root of unity, then
\[
\begin{pmatrix}
1 & \omega & \omega^2 \\
\omega & \omega^2 & 1 \\
\omega^2 & 1 & \omega
\end{pmatrix}
\]
is equal to:
(a) \(-1\) (b) \(1\) (c) 0 (d) \(\omega\)

3. The ends of the latus rectum of the conic \(x^2 + 10x - 16y + 25 = 0\) are:
(a) \((3, -4), (13, 4)\) (b) \((-3 - 4), (13, -4)\)
(c) \((3, 4), (-13, 4)\) (d) \((5, -8), (-5, 8)\)

4. The equation to the hyperbola having its eccentricity 2 and the distance between its foci is 8, is:
(a) \(\frac{x^2}{12} - \frac{y^2}{4} = 1\) (b) \(\frac{x^2}{4} - \frac{y^2}{12} = 1\)
(c) \(\frac{x^2}{8} - \frac{y^2}{2} = 1\) (d) \(\frac{x^2}{16} - \frac{y^2}{9} = 1\)

5. The solution of \(\sin^{-1} x - \sin^{-1} 2x = \pm \frac{\pi}{3}\) is:
(a) \(\pm \frac{1}{3}\) (b) \(\pm \frac{1}{4}\)
(c) \(\pm \frac{\sqrt{3}}{2}\) (d) \(\pm \frac{1}{2}\)

6. In a \(\triangle ABC\) if the sides are \(a = 3, b = 5\) and \(c = 4\), then \(\frac{\sin B}{2} + \cos \frac{B}{2}\) is equal to:
(a) \(\sqrt{2}\) (b) \(\sqrt{3} + \frac{1}{2}\)
(c) \(\frac{\sqrt{3} - 1}{2}\) (d) 1

7. The two circles \(x^2 + y^2 - 2x + 22y + 5 = 0\) and \(x^2 + y^2 + 14x + 6y + k = 0\) intersect orthogonally provided \(k\) is equal to:
(a) 47 (b) -47 (c) 49 (d) -49

8. The radius of the circle \(x^2 + y^2 + 4x + 6y + 13 = 0\) is:
(a) \(\sqrt{26}\) (b) \(\sqrt{13}\)
(c) \(\sqrt{9}\) (d) 0

9. The centre of the circle \(x = 2 + 3 \cos \theta, y = 3 \sin \theta - 1\) is:
(a) \((3, 3)\) (b) \((2, -1)\)
(c) \((-2, 1)\) (d) \((-1, 2)\)

10. The sum of the focal distances of any point on the conic \(\frac{x^2}{25} + \frac{y^2}{16} = 1\) is:
(a) 10 (b) 9 (c) 41 (d) 18

11. The solutions of the equation \(\begin{vmatrix} x & 2 & 1 \ \\
2 & 5 & x \ \\
-1 & 2 & x \end{vmatrix} = 0\) are:
(a) 3, -1 (b) -3, 1 (c) 3, 1 (d) -3, -1

12. If \(A = \begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & 17 \\ 0 & -10 \end{bmatrix}\), then \(|AB|\) is equal to:
(a) 80 (b) 100 (c) -110 (d) 92

13. The inverse of the matrix \(\begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}\) is:
(a) \(\begin{bmatrix} 1 & -3 \\ -2 & 5 \end{bmatrix}\) (b) \(\begin{bmatrix} 1 & 2 \\ -3 & 5 \end{bmatrix}\)
(c) \(\begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}\) (d) \(\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}\)
14. The projection of the vector $2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$ on the vector $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ is:
(a) $\frac{3}{\sqrt{14}}$ (b) $\frac{3}{\sqrt{14}}$
(c) $\frac{1}{\sqrt{2}}$ (d) $\frac{3}{\sqrt{2}}$

15. If $12 \cot^2 \theta - 31 \csc \theta + 32 = 0$, then the value of $\sin \theta$ is:
(a) $\frac{3}{5}$ or 1 (b) $\frac{2}{3}$ or $-\frac{2}{3}$
(c) $\frac{4}{5}$ or $\frac{3}{4}$ (d) $\pm \frac{1}{2}$

16. The circumradius of the triangle whose sides are 13, 12 and 5, is:
(a) 15 (b) $\frac{13}{2}$
(c) $\frac{15}{2}$ (d) 6

17. The general solution of $\sin x - \cos x = \sqrt{2}$, for any integer n is:
(a) $n\pi$ (b) $2n\pi + \frac{3\pi}{4}$
(c) $2n\pi$ (d) $(2n + 1)\pi$

18. The amplitude of $\frac{1 + i\sqrt{3}}{\sqrt{3} + i}$ is:
(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$
(c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{6}$

19. If $^5C_{12} = ^5C_6$, then 5C_2 is equal to:
(a) 72 (b) 153
(c) 306 (d) 2556

20. The middle term in the expansion of $\left(x - \frac{1}{x}\right)^{18}$ is:
(a) $^{18}C_9$ (b) $^{-18}C_9$
(c) $^{18}C_{10}$ (d) $^{-18}C_{10}$

21. If α, β, γ are the roots of the equation $2x^3 - 3x^2 + 6x + 1 = 0$, then $\alpha^2 + \beta^2 + \gamma^2$ is equal to:
(a) $-\frac{15}{4}$ (b) $\frac{15}{4}$
(c) $\frac{9}{4}$ (d) 4

22. If \mathbf{a}, \mathbf{b} and \mathbf{c} are mutually perpendicular unit vectors, then $|\mathbf{a} + \mathbf{b} + \mathbf{c}|$ is equal to:
(a) 3 (b) $\sqrt{3}$
(c) $\sqrt[3]{a^2 + b^2 + c^2}$ (d) 1

23. (0, -1) and (0, 3) are two opposite vertices of a square. The other two vertices are:
(a) (0, 1), (0, -3) (b) (3, -1), (0, 0)
(c) (2, 1), (-2, 1) (d) (2, 2), (1, 1)

24. The equation to the line bisecting the join of (3, -4) and (5, 2) and having its intercepts on the x-axis and the y-axis in the ratio 2 : 1 is:
(a) $x + y - 3 = 0$ (b) $2x - y = 9$
(c) $x + 2y = 2$ (d) $2x + y = 7$

25. The distance between the pair of parallel lines $x^2 + 2xy + y^2 - 8ax - 8ay - 9a^2 = 0$ is:
(a) $2\sqrt{5}a$ (b) $\sqrt{10}a$
(c) $10a$ (d) $5\sqrt{2}a$

26. The equation to the circle with centre (2, 1) and touching the line $3x + 4y = 5$ is:
(a) $x^2 + y^2 - 4x - 2y + 5 = 0$
(b) $x^2 + y^2 - 4x - 2y - 5 = 0$
(c) $x^2 + y^2 - 4x - 2y - 4 = 0$
(d) $x^2 + y^2 - 4x - 2y - 4 = 0$

27. The condition for a line $y = 2x + c$ to touch the circle $x^2 + y^2 = 16$ is:
(a) $c = 10$ (b) $c^2 = 80$
(c) $c = -12$ (d) $c^2 = 64$

28. $\int \frac{\sin(2x)}{1 + \cos^2 x} \, dx$ is equal to:
(a) $-\frac{1}{2} \log (1 + \cos^2 x) + c$
(b) $2 \log (1 + \cos^2 x) + c$
(c) $\frac{1}{2} \log (1 + \cos 2x) + c$
(d) $c - \log (1 + \cos^2 x)$

29. $\int e^x (1 + \sin x) \, dx$ is equal to:
(a) $e^x \tan \left(\frac{x}{2}\right) + c$
(b) $e^x \tan x + c$
(c) $e^x \left(\frac{1 + \sin x}{1 - \cos x}\right) + c$
(d) $c - e^x \cot \left(\frac{x}{2}\right)$

30. $\int e^{x^2} \cosec^2 x \, dx$ is equal to:
(a) -1 (b) $\frac{1}{2}$
(c) 0 (d) $\frac{1}{2}$
31. \[\int_0^\infty \log(1 + \tan x) \, dx \] is equal to:
(a) \(\frac{\pi}{8} \log e \)
(b) \(\frac{\pi}{4} \log_2 e \)
(c) \(\frac{\pi}{4} \log_2 e \)
(d) \(\frac{\pi}{8} \log e(\frac{1}{2}) \)

32. The modulus and amplitude of \(\frac{1 + 2i}{1 - (1 - i)^2} \) are:
(a) \(\sqrt{2} \) and \(\frac{\pi}{6} \)
(b) 1 and 0
(c) 1 and \(\frac{\pi}{3} \)
(d) 1 and \(\frac{\pi}{4} \)

33. \[\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} \] is equal to:
(a) \(\frac{1}{2} \)
(b) \(-\frac{1}{2} \)
(c) 0
(d) 1

34. If \(f(x) = \frac{\sin 5x}{x^2 + 2x} \), \(x \neq 0 \) \(f(x) \) is continuous at:
\(k + \frac{1}{2} \)
\(x = 0 \)

(a) 1
(b) \(-\frac{1}{2} \)
(c) 2
(d) \(\frac{1}{2} \)

35. The area bounded by the parabola \(y^2 = 4ax \) and the line \(x = a \) and \(x = 4a \) is:
(a) \(\frac{35a^2}{3} \)
(b) \(\frac{4a^2}{3} \)
(c) \(\frac{7a^2}{3} \)
(d) \(\frac{6a^2}{3} \)

36. A population \(p(t) \) of 1000 bacteria introduced into nutrient medium grows according to the relation \(p(t) = 1000 + \frac{1000t}{100 + t^2} \). The maximum size of this bacterial population is:
(a) 1100
(b) 1250
(c) 1050
(d) 5250

37. The differential equation representing a family of circles touching the y-axis at the origin is:
(a) \(x^2 + y^2 - 2xy \frac{dy}{dx} = 0 \)
(b) \(x^2 + y^2 + 2xy \frac{dy}{dx} = 0 \)
(c) \(x^2 - y^2 - 2xy \frac{dy}{dx} = 0 \)
(d) \(x^2 - y^2 + 2xy \frac{dy}{dx} = 0 \)

38. The general solution of the differential equation \((2x - y + 1) \, dx + (2y - x + 1) \, dy = 0 \) is:
(a) \(x^2 + y^2 + xy - x + y = c \)
(b) \(x^2 + y^2 - xy + x + y = c \)
(c) \(x^2 - y^2 + 2xy - x + y = c \)
(d) \(x^2 - y^2 - 2xy + x - y = c \)

39. If \(y = \tan^{-1} \frac{\sqrt{1 + x^2}}{\sqrt{1 + x^2 + \sqrt{1 - x^2}}} \), then \(\frac{dy}{dx} \) is equal to:
(a) \(\frac{x^2}{\sqrt{1 - x^4}} \)
(b) \(\frac{x^2}{\sqrt{1 - x^4}} \)
(c) \(x \)
(d) \(\frac{x}{\sqrt{1 - x^4}} \)

40. If \(x = \sin t \), \(y = \cos pt \), then:
(a) \((1 - x^2) y_2 + x y_1 + p^2 y = 0 \)
(b) \((1 - x^2) y_2 + x y_1 - p^2 y = 0 \)
(c) \((1 - x^2) y_2 - x y_1 + p^2 y = 0 \)
(d) \((1 - x^2) y_2 - x y_1 - p^2 y = 0 \)

41. If \(ST \) and \(SN \) are the lengths of the subtangent and the subnormal at the point \(\theta = \frac{\pi}{2} \) on the curve \(x = a (\theta + \sin \theta), y = a (1 - \cos \theta), a \neq 1 \), then:
(a) \(ST = SN \)
(b) \(ST = 2SN \)
(c) \(ST^2 = a SN^3 \)
(d) \(ST^3 = a SN \)

42. If \(\theta \) is the acute angle of intersection at a real point of intersection of the circle \(x^2 + y^2 = 5 \) and the parabola \(y^2 = 4x \), then \(\tan \theta \) is equal to:
(a) 1
(b) \(\sqrt{3} \)
(c) 3
(d) \(\frac{1}{\sqrt{3}} \)

43. Universal set,
\(U = \{ x \mid x^5 - 6x^4 + 11x^3 - 6x^2 = 0 \} \)
\(A = \{ x \mid x^2 - 5x + 6 = 0 \} \)
\(B = \{ x \mid x^2 - 3x + 2 = 0 \} \)
what is \((A \cap B)' \) equal to?
(a) \(\{ 1, 3 \} \)
(b) \(\{ 1, 2, 3 \} \)
(c) \(\{ 0, 1, 3 \} \)
(d) \(\{ 0, 1, 2, 3 \} \)

44. Which of the following statements is not correct for the relation \(R \) defined by \(aRb \) if and only if \(b \) lives within kilometre from \(a \)?
(a) \(R \) is reflexive
(b) \(R \) is symmetric
(c) \(R \) is not anti-symmetric
(d) None of the above
45. What is the value of \frac{(1001)_2^{(011)} - (101)_2^{(111)}}{(1001)_2^{(100)} + (1001)_2^{(011)}(101)_2^{(011)} + (101)_2^{(100)}}?
(a) (1001)_2 (b) (101)_2
(c) (110)_2 (d) (100)_2

46. The angle turned by a body undergoing circular motion depends on time as \theta = \theta_0 + \theta_1 t + \theta_2 t^2.
Then the angular acceleration of the body is:
(a) \theta_1 (b) \theta_2
(c) 2\theta_1 (d) 2\theta_2

47. The moment of inertia of a circular disc about an axis passing through the circumference perpendicular to the plane of the disc is:
(a) MR^2 (b) \frac{3}{2} MR^2
(c) \frac{MR^2}{2} (d) \frac{5}{4} MR^2

48. A body of mass 5 kg is suspended by a spring balance on an inclined plane as shown in figure. The spring balance measure:
(a) 50 N (b) 25 N
(c) 500 N (d) 10 N

49. Under the action of a force \(F = Cx\), the position of a body changes from 0 to x. The work done is:
(a) \frac{1}{2} Cx^2 (b) Cx^2
(c) Cx (d) \frac{1}{2} Cx

50. If \(\vec{A} \cdot \vec{B} = \vec{A} \times \vec{B}\), then angle between \(\vec{A}\) and \(\vec{B}\) is:
(a) 45° (b) 30°
(c) 60° (d) 90°

51. Each resistance shown in figure is 2\(\Omega\). The equivalent resistance between A and B is:
(a) \frac{GMm}{r} (b) \frac{GMm}{2r}
(c) \frac{GMm}{2r} (d) \frac{-GMm}{2r}

52. A physical quantity is given by \(X = [M^L T^L]\). The percentage error in measurement of M, L, and T are \(\alpha\), \(\beta\), and \(\gamma\) respectively. Then, the maximum % error in the quantity X is:
(a) \(a + b + c\gamma\) (b) \(a + b - c\gamma\)
(c) \(\frac{a + b + c\gamma}{\alpha + \beta + \gamma}\) (d) none of these

53. If emf induced in a coil is 2 V by changing the current in it from 8 A to 6 A in 2 \(\times 10^{-3}\) s, then the coefficient of self induction is:
(a) 2 \(\times 10^{-3}\) H (b) 10^{-3} H
(c) 0.5 \(\times 10^{-3}\) H (d) 4 \(\times 10^{-3}\) H

54. A hollow metallic sphere of radius R is given a charge Q. Then, the potential at the centre is:
(a) zero (b) \frac{1}{4\pi\varepsilon_0} \frac{Q}{R}
(c) \frac{1}{4\pi\varepsilon_0} \frac{2Q}{R} (d) \frac{1}{4\pi\varepsilon_0} \frac{Q}{2R}

55. Susceptibility of ferromagnetic substance is:
(a) > 1 (b) < 1
(c) zero (d) 1

56. What is the refractive index of a prism whose angle A = 60° and angle of minimum deviation \(d_m = 30°\)?
(a) \sqrt{2} (b) \frac{1}{\sqrt{2}}
(c) 1 (d) \frac{1}{\sqrt{3}}

57. A satellite of mass m is placed at a distance r from the centre of earth (mass M). The mechanical energy of the satellite is:
(a) \(-\frac{GMm}{r}\) (b) \(\frac{GMm}{2r}\)
(c) \(\frac{GMm}{2r}\) (d) \(-\frac{GMm}{2r}\)

58. A cell of constant emf first connected to a resistance \(R_1\) and then connected to a resistance \(R_2\). If power delivered in both cases
59. Energy gap between valence band and conduction band of a semiconductor is:
(a) zero (b) infinite
(c) 1 eV (d) 10 eV

60. At what point of a projectile motion, acceleration and velocity are perpendicular to each other?
(a) At the point of projection (b) At the point of drop
(c) At the top most point (d) Anywhere in between the point of projection and top most point

61. An object is placed at a distance 20 cm from the pole of a convex mirror of focal length 20 cm. The image is produced at:
(a) 13.3 cm (b) 20 cm
(c) 25 cm (d) 10 cm

62. Angular momentum is conserved:
(a) always (b) never
(c) when external force is absent (d) when external torque is absent

63. The plano-convex lens of focal length 20 cm and 30 cm are placed together to form a double convex lens. The final focal length will be:
(a) 12 cm (b) 60 cm
(c) 20 cm (d) 30 cm

64. Initially two gas samples 1 and 2 are at the same condition. The volume of the two are halved, one isothermally and the other adiabatically. What is the relation between the final pressure P_1 and P_2?
(a) $P_1 = P_2$ (b) $P_1 > P_2$
(c) $P_2 > P_1$ (d) Cannot be determined

65. A can is taken out from a refrigerator at 0°C. The atmospheric temperature is 25°C. If t_1 is the time taken to heat from 0°C to 5°C and t_2 is the time taken from 10°C to 15°C, then:
(a) $t_1 > t_2$ (b) $t_1 < t_2$
(c) $t_1 = t_2$ (d) there is no relation

66. A simple pendulum hanging from the ceiling of a stationary lift has time period t_1. When the lift moves downward with constant velocity, the time period is t_2, then:
(a) t_2 is infinity (b) $t_2 > t_1$
(c) $t_2 < t_1$ (d) $t_2 = t_1$

67. Two progressive waves having equation $x_1 = 3 \sin \omega t$ and $x_2 = 4 \sin (\omega t = 90^\circ)$ are super imposed. The amplitude of the resultant wave is:
(a) 5 unit (b) 1 unit
(c) 3 unit (d) 4 unit

68. In a magnetic field of 0.05 T area of coil changes from 101 cm² to 100 cm² without changing the resistance which is 2Ω. The amount of charge that flow during this period is:
(a) 2.5×10^{-6} C (b) 2×10^{-6} C
(c) 10^{-6} C (d) 8×10^{-6} C

69. A dielectric is introduced in a charged and isolated parallel plate capacitor, which of the following remains unchanged?
(a) Energy (b) Charge
(c) Electric field (d) Potential difference

70. If in a triode valve amplification factor is 20 and plate resistance is 10 kΩ, then its mutual conductance is:
(a) 2 milli mho (b) 20 milli mho
(c) (1/2) milli mho (d) 200 milli mho

71. Which of the following is a fusion reaction?
(a) $^1H^2 + ^1H^2 \rightarrow ^2He^4$
(b) $^1H^2 + ^1H^2 \rightarrow 2(^1He^2)$
(c) $^1H^1 + ^1H^1 \rightarrow ^2He^4$ (d) $^1H^1 + ^1H^2 \rightarrow ^2He^4 + n$

72. The correct relation between α and β in a transistor is:
(a) $\beta = \frac{\alpha}{1-\alpha}$ (b) $\beta = \frac{\alpha}{1+\alpha}$
(c) $\beta = \frac{1+\alpha}{\alpha}$ (d) $\beta = 1 - \alpha$

73. Which of the following law states that “good absorbers of heat are good emitters”?
(a) Stefan’s law (b) Kirchhoff’s law
(c) Planck’s law (d) Wien’s law
74. Doping of intrinsic semiconductor is done:
 (a) to neutralize charge carriers
 (b) to increase the concentration of majority
 charge carriers
 (c) to make it neutral before disposal
 (d) to carry out further purification

75. If \(\lambda \) is the wavelength of hydrogen atom from
 the transition \(n = 3 \) to \(n = 1 \), then what is the
 wavelength for doubly ionised lithium ion for
 same transition?
 (a) \(\frac{\lambda}{3} \) (b) \(3\lambda \)
 (c) \(\frac{\lambda}{9} \) (d) \(9\lambda \)

76. A rocket of mass 1000 kg is exhaust gases at a
 rate of 4 kg/s with a velocity 3000 m/s. The
 thrust developed on the rocket is:
 (a) 12000 N (b) 120 N
 (c) 800 N (d) 200 N

77. Ampere-hour is the unit of:
 (a) quantity of charge
 (b) potential
 (c) energy
 (d) current

78. Water falls from a tap, down the streamline:
 (a) area decreases
 (b) area increases
 (c) velocity remains same
 (d) area remains same

79. Positively charged particles are projected into a
 magnetic field. If the direction of the magnetic
 field is along the direction of motion of the
 charge particles, the particles get:
 (a) accelerated
 (b) decelerated
 (c) deflected
 (d) no changed in velocity

80. In Young's double slit experiment a minima is
 observed when path difference between the
 interfering beam is:
 (a) \(\lambda \) (b) \(1.5 \lambda \)
 (c) \(2\lambda \) (d) \(2.2\lambda \)

81. Calculate the energy released when three
 \(\alpha \)-particles combined to from a \(^{12} \text{C} \) nucleus, the
 mass defect is:
 (atomic mass of \(_2^4 \text{He} \) is 4.002603 u)
 (a) 0.007809 u (b) 0.002603 u
 (c) 4.002603 u (d) 0.5 u

82. In a step-up transformer, if ratio of truns of
 primary to secondary is 1 : 10 and primary
 voltage is 230 V. If the load current is 2 A, then
 the current in primary is:
 (a) 20 A (b) 10 A
 (c) 2 A (d) 1 A

83. If the equation of transverse wave is
 \(Y = 2 \sin (kx - 2t) \), then the maximum particle
 velocity is:
 (a) 4 unit (b) 2 unit
 (c) zero (d) 6 unit

84. Fusion reaction takes place at high temperature
 because:
 (a) KE is high enough to overcome repulsion
 between nuclei
 (b) nuclei are most stable at this temperature
 (c) nuclei are unstable at this temperature
 (d) none of the above

85. An isotope decays to \(1/16 \) of its mass in 1 h.
 What is the half-life period of the isotope?
 (a) 15 min (b) 30 min
 (c) 12 min (d) 10 min

Chemistry

86. The crystal field splitting energy for octahedral
 \((\Delta_o) \) and tetrahedral \((\Delta_t) \) complexes is related
 to:
 (a) \(\Delta_t = \frac{4}{9} \Delta_o \)
 (b) \(\Delta_t = \frac{1}{2} \Delta_o \)
 (c) \(\Delta_o = 2\Delta_t \)
 (d) \(\Delta_o = \frac{4}{9} \Delta_t \)

87. What is the product \(A \) in the following?

\[\text{Cl} \quad \text{Cl + Mg} \rightarrow A \]

(a) \[\text{Cl} \quad \text{Cl + Mg} \rightarrow \text{Mg-Cl} \]
(b) \[\text{Cl} \quad \text{Cl + Mg} \rightarrow \text{Mg-Cl} \]
88. Which of the following species has a bond order other than 3?
 (a) CO (b) CN⁻ (c) NO⁻ (d) O₂⁻

89. The number of waves in an orbit are:
 (a) n² (b) n (c) n¹ (d) n⁻²

90. When glucose reacts with bromine water the main product is:
 (a) gluconic acid (b) glyceraldehyde (c) sorbitol (d) saccharic acid

91. The ion which exhibits green colour?
 (a) Cu²⁺ (b) Mn²⁺ (c) Co²⁺ (d) Ni²⁺

92. The probability of finding the electron in the orbital is:
 (a) 100% (b) 90–95% (c) 70–80% (d) 50–60%

93. Which destroy antigens?
 (a) Insulin (b) Antibodies (c) Chromoprotein (d) Phosphoprotein

94. In 2H₂ → H₂ + I₂, the forward reaction is not affected by change in:
 (a) catalyst (b) pressure (c) volume (d) temperature

95. Nylon-66 is an example of:
 (a) polypropylene (b) polyester (c) polyamide (d) polystyrene

96. 1 mole of NO₂(g) at 300 K is kept in a closed container under one atmosphere. It is heated to 600 K when 20% by mass of NO₂(g) decomposes to NO₂(g). The resultant pressure is:
 (a) 1.2 atm (b) 2.4 atm (c) 2.0 atm (d) 1.0 atm

97. A hypothetical reaction A → 2B, proceeds through following sequence of steps:
 (i) A → C; ΔH = q
 (ii) C → D; ΔH = v
 (iii) ½ D → B; ΔH = x

Then the heat of reaction is:
 (a) q - v + 2x (b) q + v - 2x
 (c) q + v + 2x (d) q + 2v - 2x

98. Following reaction is:

\[
\begin{array}{c}
\text{N}_2\text{Cl} \\
\text{CuCl/HC} \\
\text{Cl}
\end{array}
\]

 (a) S₈ (b) S₆ (c) E₁ (d) E₁·CB

99. The cathodic reaction of a dry cell is represented by
\[2\text{MnO}_2(s) + \text{Zn}^{2+} + 2e^- \rightarrow \text{ZnMn}_2\text{O}_4(s)\]

If, there are 8 g of MnO₂ in the cathodic compartment then the time for which the dry cell will continue to give a current of 2 milliampere is:
 (a) 25.675 day (b) 51.35 day (c) 12.8 day (d) 6.423 day

100. On heating with oxalic acid at 110°C, glycerine gives:
 (a) glyceryl trioxalate (b) formic acid (c) glyceryl dioxalate (d) none of the above

101. Which of the following is not the example of pseudounimolecular reactions?
 (a) \[\text{CH}_3\text{COOC}_2\text{H}_5 + \text{H}_2\text{O} \xrightarrow{\text{H}^+} \text{CH}_3\text{COOH} + C_2\text{H}_5\text{OH}\]
 (b) \[C_{12}\text{H}_{22}\text{O}_{11} + \text{H}_2\text{O} \xrightarrow{\text{H}^+} \text{C}_6\text{H}_9\text{O}_5 + C_6\text{H}_7\text{O}_6\]
 (c) \[\text{CH}_2\text{COCl} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + \text{HCl}\]
 (d) \[\text{CH}_2\text{COOC}_2\text{H}_5 + \text{H}_2\text{O} \xrightarrow{\text{OH}^-} \text{CH}_3\text{COOH} + C_2\text{H}_5\text{OH}\]

102. The compound, whose stereo-chemical formula is written below, exhibits x geometrical isomers and y optical isomers.

\[
\begin{array}{c}
\text{CH}_3\text{C}==\text{C} \text{C} \text{H}_2\text{CH}_2\text{C}==\text{C} \text{CH}_3
\end{array}
\]

The values of x and y are:
 (a) 4 and 4 (b) 2 and 2 (c) 2 and 4 (d) 4 and 2
103. When Na reacts with liquid NH₃ the following substance is formed:
 (a) [Na(NH₃)₂]⁺ (b) [e(NH₃)₂]⁻
 (c) NaNH₂ (d) Na₄NH₃y

104. IUPAC name of the following compound is:

(a) 3,5-dimethylcyclohexene (b) 3,5-dimethyl-1-cyclohexene
(c) 1,5-dimethyl-1-cyclohexene (d) 1,3-dimethyl-1-cyclohexene

105. The purine base present in RNA is:
 (a) guanine (b) thymine
 (c) cytosine (d) uracil

106. The molar volume of CO₂ is maximum at:
 (a) NTP (b) 0°C and 2.0 atm
 (c) 127°C and 1 atm (d) 273°C and 2 atm

107. SO₂ does not act as:
 (a) bleaching agent (b) oxidising agent
 (c) reducing agent (d) dehydrating agent

108. The noble gas which is not found in atmosphere:
 (a) Ne (b) Ar
 (c) Rn (d) Kr

109. Which one of the following product is formed when calcium salt of adipic acid is heated?

 (a) CH₂—CH₂—O
 (b) CH₂—CH₂—C=O
 (c) CH₂CH₂CO
 (d) CH₂CH₂COOH
 (e) CH₃CH₂COOH

110. Which is not present in chlorophyll?
 (a) Carbon (b) Calcium
 (c) Magnesium (d) Hydrogen

111. Glycolaldehyde is obtained by the reaction of glycerol with:
 (a) malonic acid (b) acetic acid
 (c) phthalic acid (d) maleic acid

112. For the following two reactions:
 (i) CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g);
 ΔH = -890.4 kJ
 (ii) 2HgO(s) → 2Hg(l) + O₂(g) ; 181.6 kJ

 Which one of the following statements is correct?
 (a) Both of them are exothermic
 (b) Both of them are endothermic
 (c) (i) is exothermic and (ii) is endothermic
 (d) (i) is endothermic and (ii) is exothermic

113. A compound contains X, Y and Z atoms. The oxidation states of X, Y and Z are +2, +2 and −2 respectively. The possible formula of the compound is:
 (a) XYZ₂ (b) Y₂X₃Z₂
 (c) X₃Y₄Z₂ (d) X₃Y(Z₄)₂

114. Pinacol is:
 (a) 3-methylbutan-2-ol (b) 2,3-dimethyl-2,3-butanediol
 (c) 2,3-dimethyl-2-propanone (d) none of the above

115. If the H⁺ concentration is decreased from 1 M to 10⁻⁴ M at 25°C for the couple MnO₄⁻/Mn²⁺, then the oxidising power of the MnO₄⁻/Mn²⁺ couple decreases by:
 (a) -0.18 V (b) 0.18 V
 (c) 0.38 V (d) -0.38 V

116. For a first order reaction with rate constant ‘k’ and initial concentration ‘a’, the half-life period is given by:
 (a) ln 2
 (b) 1
 (c) ka
 (d) none of the above

117. Aldol condensation will not take place in:
 (a) HCHO (b) CH₂CHO
 (c) CH₃CHO (d) CH₂COCH₂

118. Which of the following is called Berthelot’s salt?
 (a) (NaPO₄)₆ (b) NaClO₃
 (c) KClO₃ (d) KHF₂
119. Which of the following is a Boyle plot at very low pressure?

(a) \(\frac{PV}{P} \)
(b) \(\frac{PV}{P} \)
(c) \(\frac{PV}{P} \)
(d) \(\frac{PV}{P} \)

120. Calgon used as water softener is:
(a) Na\(_2\)[Na\(_4\)(PO\(_3\))\(_6\)]
(b) Na\(_4\)[Na\(_2\)(PO\(_3\))\(_6\)]
(c) Na\(_2\)[Na\(_4\)(PO\(_4\))\(_6\)]
(d) none of these

121. How many asymmetric carbon atoms are present in:
(i) 1,2-dimethylcyclohexane,
(ii) 3-methylcyclopentene and
(iii) 3-methylcyclohexene?

(a) two, one, one
(b) one, one one
(c) two, none, two
(d) two, none, one

122. For which order half-life period is independent of initial concentration?
(a) Zero
(b) First
(c) Second
(d) Third

123. In the reaction
\[
\text{CH}_3\text{CN} + 2\text{H} \xrightarrow{\text{HCl}} \text{X} \xrightarrow{\text{boiling H}_2\text{O}} \text{Y},
\]

The term \(\text{Y} \) is:
(a) acetone
(b) ethanamine
(c) acetaldehyde
(d) dimethyl amine

124. The species that undergoes disproportionation in an alkaline medium is:
(a) MnO\(_4\)\(^{-}\)
(b) ClO\(_4\)
(c) NO\(_2\)
(d) all of these

125. On shaking \(\text{H}_2\text{O}_2 \) with acidified potassium dichromate and ether, etheral layer becomes:
(a) green
(b) red
(c) blue
(d) brown

English

Directions: Read the following passage carefully and answer the questions given below it.

PASSAGE

India is a country which has been subjected to foreign invasions since the dawn of Indian history. The fertile plains of India have been attracting avaricious tribes from all over the world. Long back the Aryans from Central Asia invaded India and settled down permanently in this beautiful land where food and fodder were available in plenty. After a chain of invasions from the bordering countries through land routes, the European nations, including the British, finally came to India to exploit her rich resources. The Englishmen came to India as traders but stealthily became her masters. India became the 'brightest Jewel' in the British diadem. They proclaimed to civilise her and started to exploit her. Neither the imperialist might, nor the treachery of some of her sons, nor the treachery of some of her sons, nor the nerve-racking exploitation could curb the indomitable urge for freedom of the people who bid defiance to time. They fought and fought heroically; they never submitted. Their struggle for independence is an inspiring and exhilarating story. It is a story not only of firm determination and will but also of sacrifice and suffering, a story of heroism and courage that happens in all revolutionaries.

126. Why did the Aryans settle permanently in India?
(a) Because here food and fodder were available in plenty
(b) Because they invaded India
(c) Because here food was available in plenty
(d) Because here fodder was available in plenty

127. British came to India:
(a) to exploit her rich resources
(b) to become her master
(c) to civilise her
(d) none of the above
128. The Indians indomitable urge for freedom could be curbed neither:
(a) by the nerve-racking exploitation of the British
(b) by the treachery of some of her sons
(c) by the imperialist might
(d) all of the above
Directions: In the following questions, out of the four alternatives choose the one which is most opposite in meaning to the word given in capital letters.

129. INGRATITUDE:
(a) Stimulation (b) Reward
(c) Sympathy (d) Thankfulness

130. GIGANTIC:
(a) Tiny (b) Narrow
(c) Vulgar (d) Attentive

131. COLOURLESS:
(a) Resolute (b) Steadfast
(c) Pleasant (d) Terrible
Directions: Choose the word which is most nearly the same in meaning to the word given in capital letters.

132. CONNOISSEUR:
(a) Lover of art (b) Interpreter
(c) Delinquent (d) Ignorant

133. LETHAL:
(a) Unlawful (b) Sluggish
(c) Deadly (d) Smooth

134. PICTURESQUE:
(a) Photogenic (b) Simple
(b) Ugly (d) Stimulating
(c) Stimulating (d) Simple
Directions: The following sentences have been divided into three parts (a), (b), (c). One of the parts may contain an error. Write down the part of the sentence that has an error. If there is No error, mark (d) as your answer.

135. Whenever is the matter I shall
(a) do this work because I have
(b) to expose my working capacity at any cost.
(c) No error
(d)

136. She is so lazy as she cannot
(a) do this work properly and
(b) cannot cooperate us in your scheme.
(c) No error
(d)
Directions: Each of the idioms or phrases is followed by four meanings out of which only one is correct. Pick out the correct meaning.

137. A hard nut to crack:
(a) Difficult things require extra effort
(b) A difficult problem to solve
(c) A difficult problem solved effortlessly
(d) Costly things need careful handling

138. To beat about the bush:
(a) Not to come to the point
(b) Vigorous search for the culprit
(c) Easily achieved success without much effort
(d) Working hard to achieve the goal
Directions: Choose the suitable preposition from the given alternatives to fill in the blanks in the following sentences.

139. So many servants attended ….. him during his illness.
(a) with (b) on
(c) for (d) to

140. At last he yielded ….. the temptation.
(a) on (b) off
(c) for (d) to

Reasoning

141. Kilogram is related to Quintal in the same way as Paisa is related to:
(a) Rupee
(b) Coin
(c) Wealth
(d) Money

142. In the following question four groups of letters are given. Three of them are alike in a certain way while one is different. Select the one which is different.
(a) XXYA (b) llMP
(c) hHIR (d) DBCE
143. Select a figure from the four alternatives, which when placed in the blank space of fig. (x) would complete the pattern.

(a)
(b)
(c)
(d)

(x)

144. Statement: The data given by the U.S. Labour Ministry indicate that till the year 2000, there will be a shortage of 1,00,000 programmers. A spokesman from the industry said, "We should understand this thoroughly America needs Indian programmers. This is not only the question of investment but also of the talent with which the Indian programmers are equipped."

Conclusions:
(a) In other sectors also, there will be shortage of the talented labour till the year 2000.
(b) Indian programmers are the most talented in the world.
(c) Indian programmers are available on comparatively less salary in comparison to the programmers from other countries.
(d) Inspite of entering with huge capital in the Software Training Sector, U.S. could not be able to meet its own needs fully.

145. Consider the following three figures, marked X, Y, Z showing one fold in X, another in Y and cut in Z. From amongst the answer figures A, B, C and D, select the one, showing the unfolded position of Z.

(a)
(b)
(c)
(d)

(X)

146. Closed figure becomes more and more open.

(a)
(b)
(c)
(d)

Direction: In the following question, choose the set of figures which follows the given rule.

147. In the following question, find out which of the figures (a), (b), (c) and (d) can be formed from the pieces given in (X).
Directions: Find the missing character from among the given alternatives.

148.

149. Find the wrong term in the letter-number series given below:
(a) G4T
(b) J10R
(c) M20P
(d) P43N

150. Select one alternative figure out of (a), (b), (c) and (d), which completes the given matrix.