RAJASTHAN P.E.T. CHEMISTRY – 1997

1.				tendioic acid is :	
	(1) sp2	(2) sp3	(3) both two	(4) sp	
2.	(1) n-pen (2) 2, 2-d (3) 2, 3-d	_		f pentane :	
3.				CI ₂ and CCI ₄ are respectively: and 4 (4) 2 and 4	
4.		_	solves in lonic (3) CCI ₄		
5.	The conjuga (1) S ⁻²		is: (3) both two	(4) none	
	titration as a (1) NH ₄ C (2) NH ₄ C (3) NH ₄ C	suitable indic OH and HCI OH and HCOOI OH and C ₂ H ₄ O ₂ I and C ₂ O ₄ H ₂	cator : H con are :	sed in which of the following type iderite (4) Limonite	of
8.	The molar co	oncentration o	of chloride ions	s in the resulting solution of 300	
			ml. of 4.0 M B (3) 5.0 M	_	
9.	Which of the $(1) N_2^{-2}$	e following has	s least bond en	nergy: (4) N ₂	
10	. Which of the (1) O ₂ -2		ecies has highe	est bond energy : (4) O ₂	
11		yclobutene ne	mpound is not	aromatic :	

12. Which of the following compound is used as refrigerant: (1) CCI ₂ F ₂ (2) CCI ₄ (3) CF ₄ (4) Acetone										
13. Which of the following is weak acid : (1) C_6H_6 (2) CH_3 - $C\equiv CH$ (3) $CH_2=CH_2$ (4) CH_3 - $C\equiv C$ - CH_3										
14. L.P.G. mainly consist of the following: (1) Methane (2) Hydrogen (3) Acetylene (4) Butane										
15. The solubility product of CaCo ₃ is 5 x 10 ⁻⁹ . The solubility will be : $(1) 2.5 \times 10^{-5}$ $(2) 7 \times 10^{-5}$ $(3) 2.5 \times 10^{-4}$ $(4) 2.2 \times 10^{-9}$										
16. The outer electronic configuration of alkali earth metals is : $(1) \text{ nd}^{10}$ $(2) \text{ ns}^{1}$ $(3) \text{ np}^{6}$ $(4) \text{ ns}_{2}$										
17. The nature of 2, 4, 6-trinitrophenol is: (1) Neutral (2) Basic (3) Acidic (4) Weak basic										
18. Which of the following group is sharp ortho and para directive : $(1)-C_6H_5 \qquad (2)\text{-OH} \qquad (3)-CH_3 \qquad (4)-CI$										
 19. By which of the following process hydrocarbons are found from petroleum: (1) combustion (2) fractional distillation (3) addition (4) all above 										
20. A sample of petroleum contains 30% n-heptane, 10% 2-methyl hexane and 60% 2, 2, 4-trimethyl pentane, the octane no. of this sample will be: (1) 30% (2) 60% (3) 10% (4) 70%										
21. In which of the following halogens p-electrons does not take part in										
resonance: (1) CH_2 = CH - CH_2 Cl (2) BrC_6H_5 (3) C_6H_5 Cl (4) CH_2 = $CHCl$										
 22. Which of the following statement is false: (1) 40% solution HCHO is known as formalin (2) HCHO is least reactive in its homologous series (3) The B.P. of isovarelaldehyde is less than n-varelaldehyde (4) The boiling point of ketones are higher than that of aldehydes 										
23. If n + u= 8 then the expected no. of orbitals will be: (1) 4 (2) 9 (3) 16 (4) 25										

24. A B 2C	l ₂ Ca(C	$OH)_2$		
24. A B	c	here the	compound C v	vill be:
(1) Lewsite (2)) Westron	(3) Acetylene	e tetra chloride	(4) Both 2 and 3
25. Which of the fol	lowing is le	ast hydrolyse	d·	
(1) $BeCl_2$ (2	_	•		
$(1) \mathbf{DCCI}_2 \qquad (2)$) WigCi2	(3) CaC1 ₂	(3) DaC1 ₂	
26. The laughing ga	s is :			
$(1) N_2 O_4$ (2)		(3) N_2O	(4) N_2O_5	
27. The hydrogen io pH value of this			ntion is 3.98 x 1	0 ⁻⁶ mole per liter. The
(1) 6.0 (2)	5.8	(3) 5.4	(4) 5.9	
28. The reaction of s (1) Butane (2) 29. Which of the fol (1) Carbamic acid (3) Lactic acid) Ethane llowing acid d (2) Ba	(3) Methane Is does not contribituric acid	(4) Propane	group :
30. Which of the fol	lowing com	mound of von	one does not e	viete •
$(1) XeF_6 \qquad (2)$	_	-		Alsts.
(1) 1101 0 (2)) 1 101 4	(1) 1101 3	(1) 1101 2	
31. FeSO₄, 7H₂O is (1) Mohr's salt		riol (3) Gr	reen vitriol (4)	White vitriol
32 The solution of l	RiCl3 in dil	HCI whon d	iluted with we	ter white precipitate is
formed which is		. Het when u	nuteu with wa	ter winte precipitate is
(1) Bismith oxycl		(2) Rismith o	vide	
(3) Bismith hydro				
(3) Dismining and	SAIGE	(3) Holle of the		
33. The strongest ac	eid is :			
(1) acetic acid				
(2) trichloroa				
(3) dichlorace				
(4) monochlo		d		
(1) monocimo	noucoure uer			
34. The false statem	ent regardi	ing alkane is :		
		n polymerizatio		
		limination reac		
` '	C		lilute KMnO ₄ so	olution
		e bromine wat		
() == ================================				
35. Which of the fol	lowing is st	rongest base	•	
$(1) C_6H_5NH_2$	(2) CH	I_3NH_2		

(3) NH ₃	(4) CH ₃ CONH ₂
36. Which of the follow easily:	ing aromatic compound gives sulphonation reaction very
· ·	(2) Nitrobenzene (3) Toluene (4) benzene
37. The geometry of I3 -(1) Triangular	is: (2) Linear (3) Tetrahedral (4) T-shape
38. The half life of a rad	dio active element is 140 days. 1 gm. of this element after
560 days will becom (1) 1 gm (2) 16	1gm (3) 1gm. (4) 1 gm. 4 8 2
	tration of hydrogen peroxide 6.8% concentration will be: .2 (3) 22.4 (4) 20
	ing on combustion give maximum energy: opane (3) Methane (4) Butane
41. C6H6 + CH3CL	C6H5CH3 + HCI The name of above reaction is: (2) Reimer-tiemann (4) Cannizaro
42. The oxidation state (1) + 4 (2) + 3	of Cr in K_2 Cr ₂ O ₇ is: 3 (3) + 6 (4) + 5
43. The natural rubber (1) 1, 3- butadiene	is the polymer of: (2) polyamide (3) isoprene (4) none of these
44. Nylone-66 is a : (1) polyester (2) po	lyamide (3) polyacrylate (4) none of these
45. $2NO(g) + CI_2(g) \xrightarrow{\leftarrow}$	2 NOCI The equilibrium constant for this reaction is :
(1) $K_c = \frac{[NOCI]^2}{[NO]^2[CI_2]^2}$	(2) $K_c = \frac{[NOCI]^2}{[2NO]^2[CI_2]}$
(3) $K_c = \frac{[NOCI]^2}{[NO]^2 [CI^2]}$	(4) $K_c = \underline{[2NOCI]}$ [2NO][CI]
A 16. $C_6H_6 + CO + HCI$ \longrightarrow (1) anhydrans ZnO (3) anhydrous AICO ₃	

47.					and 1.75 x 10 ⁻⁵ (at 25 ⁰					
	C) respectively. (1) CH ₃ COOH(2	_		(4) none of the	nese					
48.	(1) CH ₃ CH ₂ C (2) CH ₃ CH ₂ C (3) CH ₃ CH ₂ C (4) CH ₃ CH ₂ C	CH (CH ₃) CI CH (CH ₃) CI CH ₂ CH ₂ CH ₂	H ₂ OH HOH OH	(asterisk) is asy	mmetric :					
49.		•	-		id AICI ₃ to form: (4) Chlorobenzene					
50.	Which of the fol $(1) H_2S$ (2)	llowing is re) HNO ₃	~ ~	(4) K ₂ Cr ₂ O ₇						
51.	In which of the mechanism is m	_	kyl chloride	the possibility	of SN ₁ reaction					
	(1) $(CH_3)_2CHCI$		H ₃) ₃ C-CI	(3) CH ₃ CI	(4) CH ₃ CH ₂ CI					
52.	The energy proc (1) 28.2 MeV			v	nu is: (4) none of these					
53.	The mole of hyd (1) 5 x 10^2	lrogen ion i 2) 5 x 10 ⁻³	n 50 ml. of 0 (3) 5	.1 M HCI soluti 5 x 10 ³ (4) 5	ion will be : x 10 ⁻²					
54.	54. Petroleum is mainly consist of: (1) Aliphatic alcohol (2) Aromatic hydrocarbon (3) Alipnetic hydrocarbon (4) None of these									
55. C ₆ l will be	$H_6OCH_3 + HI$	ΔΔ	+	. The products i	in the above reaction					
	(1) C ₆ H ₅ I+CH ₃ O (3) C ₆ H ₅ OH+CH		(2) $C_6H_5CH_6$ (4) $C_6H_6+C_6$							
56	F3 is : (1) Bronsted bas	e (2) Lev	wis base (3)	Lewis acid (4) l	Bronsted acid					
57. WI	nich of the follow (1) Benzaldehyde	_	_	let colour with Nitrobenzene	FeCI ₃ solution: (4) Phenol					
58. Hy	po solution form (1) Na ₅ [Ag(S ₂ O ₃		the following (2) Na ₃ [Ago		ound with AgCI :					

59. Molecular oxygen i	is:			
(1) ferro magnetic (2	2) diamagnetic	(3) par	a magnetic	(4) non magnetic
60. Bonds in acetylene	are:			
(1) 2π bonds (2)	2) one π bond	$(3) 3\pi$	bonds (4) nor	ne of these
(1) It gives tertia (2) It gives tertia (3) It gives secon (4) It gives prim	ary alcohol wit ary alcohol wit ndary alcohol	h acetamide h acetone with acetaldeh	•	
62. Which of the follow	_	_		al temperature :
$(1) C_{20}H_{42} \qquad (2)$	2) C_3H_8	$(3) C_8 H_{18}$	$(4) CH_4$	
(1) Potassium ch (2) AgNO ₃ solut (3) Water (4) All above	nloride solution		num in :	
64. The weight of a ben (1) 78 gm. (2)			(4) noi	ne of these
65. CuFeS ₂ is: (1) iorn pyrites	(2) mala	achite (3) cha	alcosite (4) cha	alcopyrites
66. Primary halides fol	llow the follow	wing reaction	mechanism :	
· ·		_	(4) none of the	ese
67. C and Si belong to (1) liquid (2)	_		c table, CO ₂ is (4) none of the	_
68. H ₂ S is a gas while I (1) there is assoc (2) bond energy (3) the ionization (4) the electro no	ciation due to l of OH high n potential of o	hydrogen bond oxygen is high		
69. "The negative part unsaturated asymmetr hydrogen atoms." This (1) Markowniko (2) Peroxide effe (3) Bayer's law	ric carbon ato s statement is off's law ect	m which is li		_

(4) $Na_3[Ag(S_2O_3)_3]$

(3) $Na_2\{Ag(S_2O_3)_2]$

(4) none of t	hese				
e conjugate	base of NH	13 is :	(3) NH ₂ ⁺		(4) NH ₂ +
(1) 11/2114	(2) 1112		(3) 1114		(4) 14112
1. (a) N ₂ and (b) C ₂ H ₂ . The nos. of πand σφond in the molecules are respective (1) (a) 2,2 (b) 2,2 (2) (a) 1,2 (b) 2,1 (3) (a) 2,1 (b) 2,3 (4) (a) 2,1 (b) 2,1 (2). In which of the following compound there are maximum no. of sp ² hybrid Coms: (1) Benzene (2) 1,3,5-hexatriene (2) 1,2,4-hexatriene (4) both 1 and 2 3. The shape of the molecule having hybrid orbitals of 20% character will be (1) octahedral (2) tetrahedral (3) square planer (4) triangular bipyramidal 4. The pH of a solution is 5. If the dilution of this solution is increased by 100 te pH value will be: (1) 5 (2) 7 (3) 9 (4) 8 5. The required amount of oxygen for combustion of 20 ml. of gaseous ydrocarbon is 50 ml. The hydrocarbon will be: (1) C ₂ H ₂ (2) C ₂ H ₄ (3) C ₂ H ₆ (4) C ₃ H ₄ 76. The formula of Celestine is: (1) SrSO ₄ (2) SrCO ₃ (3) SrO (4) SrCl ₂ 77. CuCl ₂ + →-Gu + Cl ₂ . The required amount of electricity for this reaction (1) 4 faraday (2) 2 faraday (3) 1 faraday (4) 3 faraday 78. Nitrogen does not forms NF ₅ because: (1) The bondenergy of N≡N is very high (2) Vaccent d-orbitals are not present (3) N belongs to V group (4) There is inert effect 79. The normal temperature when raised by 10° C, the rate of reaction will	d in the molecules are respectively :				
(3) (a) 2,1 (b	9) 2,3	(4) (a)	2,1 (b) 2,1		
	following	comp	oound ther	e ar	re maximum no. of sp ² hybrid C
(1) Benzene	((2) 1,3	3,5-hexatrie	ne	
(2) 1,2,4-hex	katriene ((4) bo	th 1 and 2		
e shape of th	e molecul	e havi	ing hybrid	orb	pitals of 20% character will be :
(1) octahedra	al ((2) tet	rahedral		
(3) square pl	laner ((4) tria	angular bipy	yran	nidal
e pH of a sol	lution is 5.	If the	e dilution o	f th	is solution is increased by 100 times
_					•
(1) 5	(2) 7		(3) 9		(4) 8
					(4) SrCl ₂
_	_		-		v
Nitrogen de	oes not for	ms N	F5 because	:	
_					1
			-	_	
)		
(4) Ther	e is inert ef	ffect			
The norma	l temperat	ture v	vhen raised	l by	10°C, the rate of reaction will be :
	-				
	•				
	•				
(4) incre	ased by 10	umes	8		
Which of the chloride:	he followir	ng giv	es red pred	cipit	tate with ammonical cuprous
(1) Propane	(2) Etha	ne	(3) Metha	ne	(4) Acetylene
	e conjugate (1) N ₂ H ₄ N ₂ and (b) (1) (a) 2,2 (b) (3) (a) 2,1 (b) (3) (a) 2,1 (b) (4) (a) Expense (b) Expense (c) 1,2,4-hex (c) 1,2,4-he	(1) N_2H_4 (2) NH_2 N_2 and (b) C_2H_2 . The (1) (a) 2,2 (b) 2,2 (3) (a) 2,1 (b) 2,3 (which of the following (2) 1,2,4-hexatriene (2) 1,2,4-hexatriene (3) square planer (4) octahedral (5) square planer (6) to a solution is 5. I value will be: (1) 5 (2) 7 e required amount of carbon is 50 ml. The hy (1) C_2H_2 (2) C_2H_2 The formula of Celes (1) $SrSO_4$ (2) $SrCo$ CuCl ₂ + \rightarrow -Gu + Cl ₂ . (1) 4 faraday (2) Vaccent d-orbit (3) N belongs to V (4) There is inert effective (2) increased by 2 ti (2) increased by 2 ti (3) lowered by 10 to (4) increased by 10 to (4) increased by 10 to (4) which of the following chloride:	e conjugate base of NH3 is: $(1) N_2H_4 \qquad (2) NH_2$ $N_2 \text{ and (b) } C_2H_2. \text{ The nos. of } (1) \text{ (a) } 2,2 \text{ (b) } 2,2 \qquad (2) \text{ (a) } (3) \text{ (a) } 2,1 \text{ (b) } 2,3 \qquad (4) \text{ (a) } \text{ which of the following comp}:$ $(1) \text{ Benzene} \qquad (2) 1,3 \qquad (2) 1,2,4-\text{hexatriene} \qquad (4) \text{ bo e shape of the molecule have } (1) \text{ octahedral} \qquad (2) \text{ tet } (3) \text{ square planer} \qquad (4) \text{ trial eph of a solution is 5. If the I value will be:} (1) 5 \qquad (2) 7$ $e \text{ required amount of oxyge carbon is 50 ml. The hydrocolor } (1) \text{ C}_2\text{H}_2 \qquad (2) \text{ C}_2\text{H}_4$ $e \text{ The formula of Celestine is} (1) \text{ SrSO}_4 \qquad (2) \text{ SrCO}_3$ $e \text{ CuCl}_2 + \rightarrow \text{-Gu} + \text{Cl}_2. The position of the composition of $	e conjugate base of NH3 is: (1) N_2H_4 (2) NH_2 (3) NH_4^+ N ₂ and (b) C_2H_2 . The nos. of π and σ decorporated (1) (a) 2,2 (b) 2,2 (2) (a) 1,2 (b) 2,1 (3) (a) 2,1 (b) 2,3 (4) (a) 2,1 (b) 2,1 (b) 2,1 (b) 2,1 (c) 2,1 (c) 3,5-hexatrie (c) 1,2,4-hexatriene (d) both 1 and 2 (e) shape of the molecule having hybrid (1) octahedral (2) tetrahedral (3) square planer (4) triangular bipy (e) pH of a solution is 5. If the dilution of a value will be: (1) 5 (2) 7 (3) 9 e required amount of oxygen for combover carbon is 50 ml. The hydrocarbon will (1) C_2H_2 (2) C_2H_4 (3) C_2H_6 (2) $SrCO_3$ (3) SrO_4 (2) $SrCO_5$ (3) SrO_6 (1) The bondenergy of SrO_7 (2) $SrCO_8$ (3) SrO_8 (1) The bondenergy of $Srorrow$ (2) $SrCO_8$ (3) SrO_9 (2) $SrCO_9$ (3) SrO_9 (3) SrO_9 (4) There is inert effect The normal temperature when raised (1) lowered by 2 times (2) increased by 10 times (4) increased by 10 times (5) $Srorrow$ (1) $Srorrow$ (1) $Srorrow$ (1) $Srorrow$ (2) $Srorrow$ (3) $Srorrow$ (4) $Srorrow$ (4) $Srorrow$ (5) $Srorrow$ (6) $Srorrow$ (7) $Srorrow$ (8) $Srorrow$ (9) $Srorrow$ (1) $Srorrow$ (1) $Srorrow$ (1) $Srorrow$ (1) $Srorrow$ (2) $Srorrow$ (3) $Srorrow$ (4) $Srorrow$ (4) $Srorrow$ (5) $Srorrow$ (6) $Srorrow$ (7) $Srorrow$ (8) $Srorrow$ (9) $Srorrow$ (1) $Srorrow$ (1) $Srorrow$ (1) $Srorrow$ (1) $Srorrow$ (2) $Srorrow$ (3) $Srorrow$ (4) $Srorrow$ (5) $Srorrow$ (6) $Srorrow$ (7) $Srorrow$ (7) $Srorrow$ (8) $Srorrow$ (9) $Srorrow$ (9) $Srorrow$ (9) $Srorrow$ (9) $Srorrow$ (9) $Srorrow$ (9) $Srorrow$ (1) Sr	e conjugate base of NH3 is: (1) N_2H_4 (2) NH_2 (3) NH_4 ⁺ N ₂ and (b) C_2H_2 . The nos. of π and σ doors (1) (a) 2,2 (b) 2,2 (2) (a) 1,2 (b) 2,1 (3) (a) 2,1 (b) 2,3 (4) (a) 2,1 (b) 2,1 which of the following compound there are: (1) Benzene (2) 1,3,5-hexatriene (2) 1,2,4-hexatriene (4) both 1 and 2 e shape of the molecule having hybrid orb: (1) octahedral (2) tetrahedral (3) square planer (4) triangular bipyrare e pH of a solution is 5. If the dilution of the value will be: (1) 5 (2) 7 (3) 9 e required amount of oxygen for combust carbon is 50 ml. The hydrocarbon will be (1) C_2H_2 (2) C_2H_4 (3) C_2H_6 The formula of Celestine is: (1) $SrSO_4$ (2) $SrCO_3$ (3) SrO CuCl ₂ + \rightarrow -Gu + Cl ₂ . The required amount of the following of N=N is very high (2) Vaccent d-orbitals are not present (3) N belongs to V group (4) There is inert effect The normal temperature when raised by (1) lowered by 2 times (2) increased by 2 times (3) lowered by 10 times (4) increased by 10 times Which of the following gives red precipit chloride:

81. $[Cu(NH_3)_4]^{2+}$ snows the following hybridization: (1) dsp^2 (2) sp^3d (3) dsp^3 (4) sp^3
82. A solution contains CI-, I and S O ₄ ³⁻ ions in it. Which of the following ion is capable to precipitate all of above when added in this solution: (1) Pb ²⁺ (2) Ba ²⁺ (3) Hg ²⁺ (4) Cu ²⁺
83. Fool's gold is : (1) Cu_2S (2) FeS_2 (3) Al_2O_5 (4) $CuFeS_2$
84. In which of the following compound the central atom is in sp^2 hybrid state : (1) OF ₂ (2) HgCl ₂ (3) XeF ₂ (4) NH ₂ ⁺
85. The number of alkenyl groups possible from $C_4H_7^-$ are : (1) 7 (2) 5 (3) 3 (4) 8
86. The tetraethyl lead mixed in petrol is works as:(1) Cooling agent(2) Anti knocking agent(3) Bleaching agent(4) None of these
87. The alkaline hydrolysis of ester is known as: (1) dehydrogenation (2) dehydration (3) esterification (4) saponification
88. The degree of ionization of 0.4 M acetic acid will be : $(K_a = 1.8 \times 10^{-5})$ (1) 6.71 x 10 ⁻³ (2) 1.6x10 ⁻³ (3) 0.4x1.8x10 ⁻⁵ (4) 1.8x10 ⁻⁵
89. Haber process is used for production of which of the following : (1) NH_3 (2) HNO_3 (3) H_2SO_4 (4) O_3
 90. The p_{ka} value of phenolphthalein is 9.1 and the pH range is 8-10. In which of the following titrations it can be used as an indicator: NH₄OHand HCI NH₄OH and CH₃COOH NaOH and HCI NH₄OH
91. Number of electrons in a one molecule of CO_2 : (1) pb^{2+} (2) Hg^{2+} (3) Ba^{2+} (4) Cu^{2+}
92. Which of the following species shows the maximum magnetic moment : $(1) \text{ Mn}^{+6}$ $(2) \text{ Ni}^{2+}$ $(3) \text{ Fe}^{3+}$ $(4) \text{ Ag}^{+}$
93. K $_{sp}$ value of CaF $_2$ is 3.75 x 10^{11} The solubility will be :

(1) 1.45x10 ⁻¹¹ mol/litre ⁻¹ (2) 3.45x10 ⁻⁴ mol/liter ⁻¹ (3) 2.05x10 ⁻⁴ mol/liter ⁻¹ (4) 3.75 x 10 ⁻¹¹ mol/liter ⁻¹
94. When Pb ₃ O ₄ is heated with dilute H N O ₃ it gives: (1) pbO ₂ and pb(NO ₃) ₂ (2) pbO and pb(NO ₃) ₂ (3) pbO ₂ (4) pbO
95. C-H bond length is least in: (1) Acetylene (2) Methane (3) Ethylene (4) Ethane
96. The minimum nos. of carbon atoms in ketones which will show chain isomerism will be: (1) Seven (2) four (3) six (4) five
97. Which of the following organic compound could not be dried by anhydrous CaCI ₂ : (1) ethanol (2) benzene (3) chloroform (4) ethyl acetate
98. Which of the following compound forms white precipitate with bromine water: (1) Nitrobenzene (2) Phenol (3) Benzene (4) all above
99. Gypsum is: (1) CaSO ₄ .H ₂ O (2) CaSO ₄ . 2H ₂ O (3) 2CaSO ₄ . 2H ₂ O (4) CaSO ₄
100. Which of the following carbonium ion is most stable :
(1) CH_3 - C — CH_3 (2) CH_3CH_2
CH ₃ + + (3) CH ₃ 0CH-CH ₃ (4) CH ₃

ANSWER SHEET

1.(2)	2.(3)	3.(3)	4.(2)	5.(2)	6.(4)	7.(1)	8.(3)	9.(1)	10.(4)	11.(1)
12.(1)	13.(2)	14.(4)	15.(2)	16.(4)	17.(3)	18.(2)	19.(2)	20.(2)	21.(1)	22.(2)
23.(3)	24.(4)	25.(4)	26.(3)	27.(3)	28.(3)	29.(2)	30.(3)	31.(3)	32.(1)	33.(2)
34.(3)	35.(2)	36.(3)	37.(2)	38.(1)	39.(4)	40.(4)	41.(3)	42(3)	43.(3)	44.(2)
45.(3)	46.(3)	47.(1)	48.(1)	49.(1)	50.(1)	51.(2)	52.(1)	53.(2)	54.(3)	55.(3)
56.(3)	57.(4)	58.(3)	59.(3)	60.(1)	61.(1)	62.(3)	63.(3)	64.(3)	65.(4)	66.(1)
67.(3)	68.(1)	69.(1)	70.(2)	71.(3)	72.(4)	73.(4)	74.(2)	75.(1)	76.(2)	77.(2)
78.(2)	79.(2)	80.(4)	81.(1)	82.(1)	83.(2)	84.(4)	85.(4)	86.(2)	87.(4)	88.(1)
89.(1)	90.(3)	91.(1)	92.(3)	93.(3)	94.(1)	95.(1)	96.(4)	97.(1)	98.(2)	99.(2)
100.(1)										

1. The equation of the normal to the circle $x^2 + y^2 = a^2$ at point (x', y') will be :

(1)
$$x'y - xy' = 0$$

(1)
$$x'y - xy' = 0$$
 (2) $xx' - yy' = 0$

(3)
$$x'y + xy' = 0$$
 (4) $xx' + yy' = 0$

$$(4) xx' + yy' = 0$$

2. Equation of the bisector of the acute angle between lines 3x + 4y + 5 = 0 and 12x - 5y - 7 = 0 is :

(1)
$$21x + 77y + 100 = 0$$

(2)
$$99x - 27y + 30 = 0$$

(3)
$$99x + 27y + 30 = 0$$

(4)
$$21x - 77y - 100 = 0$$

3. Equation to the line passing through the point (-4,5) and perpendicular to 3x = 4v = 7:

(1)
$$3x-4y+32=0$$
 (2) $4x+3y+1=0$

$$(2) 4x+3y+1=0$$

$$(3) 3x+4y-8=0$$

$$(4) 4x-3y+31=0$$

4. If $\theta\theta$ s the angle between two straight lines represented by $ax^2 + 2hxy + by^2 =$ 0 then:

(1)
$$\tan \theta = 2\sqrt{h^2 + ab}$$

$$\frac{a+b}{(2)}$$
 and $0 = 2\sqrt{\frac{b^2}{b^2}}$ at

(2)
$$\cos \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

(3)
$$\tan \theta = \sqrt{h^2 - ab}$$

(4)
$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

5. The real part of $\cos h$ ($\alpha e + i\beta \beta$:

- (1) $\sin \alpha \sin h\beta$
- (2) $\cos \alpha \cos h\beta$
- (3) $2 \cos n\theta$
- (4) $\cos h\alpha \cos \beta$

6. If $z = \cos \theta \theta \sin \theta \theta$ then the value of $z^n + \frac{1}{z^n}$ will be:

- (1) $\sin 2n\theta$
- (2) $2 \sin n\theta$ (3) $2 \cos n\theta$ (4) $\cos 2n\theta$

7. If α cand β are the roots of the equation $x^2 - 2x + 4 = 0$ then the value of $\alpha^n x + \beta^n y$ will be:

- (1) $i2^{n+1} \sin(n\pi/3)$ (2) $2^{n+1} \cos(n\pi/3)$
- (3) $i2^{n-1} \sin(n\pi/3)$ (4) $2^{n-1} \cos(n\pi/3)$

8. $[\sin(\alpha e \theta) - e^{ai} \sin \theta]^n$ is equal to: (1) $\cos^{n} \alpha e^{in\theta}$ (2) $\sin^{n} \alpha e^{in\theta}$ (3) $\cos^{n} \alpha e^{-in\theta}$ (4) $\sin^{n} \alpha e^{-in\theta}$

- (4) $\sin^n \alpha e^{-in\theta}$

second order then CAC is equal to:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & 0
\end{pmatrix} \qquad \qquad \begin{pmatrix}
4 \end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$$

10. If
$$A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$

10. If
$$A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ then the correct statement is :

then the correct statement is:

(1)
$$A^2 + 5A - 7I = 0$$

$$(2)$$
 $-A^2 + 5A + 7I = 0$

(3)
$$A^2-5A+7I=0$$

(4)
$$A^2 + 5A + 7I = 0$$

11. If A and B are the two matrices of the same order and $A^2-b^2=(A+B)(A-B)$. then the correct statement will be:

$$(1) A'B' = AB$$

$$(2)$$
 AB=BA

(2)
$$AB=BA$$
 (3) $A^2+B^2=A^2-B^2$ (4) none of these

12. The value of the determinant
$$\begin{vmatrix} a-b-c & 2 & a & 2 & a \\ 2 & b & b-c-a & 2 & b \\ 2 & c & 2 & c & c-a-b \end{vmatrix}$$
 will be :

(1)
$$(a-b-c)(a^2+b^2+c^2)$$
 (2) $(a+b+c)^3$ (3) $(a+b+c)(ab+bc+ca)$ (4) none of these

13. If
$$(1+x)^n = C_0 + C_1x + C_2x^2 + ... + C_nx^n$$
, then $C_0-C_1+C_2-C_3+....+(-1)^n$ C_n is equal to:

$$(1) 3^n$$
 $(2) 2^n$

14. The term independent of x in the expansion
$$\begin{bmatrix} of & x + \underline{1} \\ x \end{bmatrix}^{2n}$$
 is :

$$\begin{array}{ccc} (1) & \underline{1.3.5......(2n-1)} & . & 2^{n-1} \\ & & n! & \\ (2) & \underline{1.3.5......(2n-1)} & . & 2^n \\ & & n! & \end{array}$$

(2)
$$\underbrace{1.3.5.....(2n-1)}_{n!}$$
. 2^{r}

(3) a.3.5.....(2n-1)
$$.2^n$$

(4) none of these

15. $(1-x)^3$ is equal to :

- x)³ is equal to:
(1)
$$x^3+3x^2+3x-1$$

(2) x^3-3x^2+3x-1
(3) x^3-3x^2-3x+1
(4) x^3+3x^2+3x+1

(2)
$$x^3 - 3x^2 + 3x - 1$$

(3)
$$x^3 - 3x^2 - 3x + 1$$

$$(4) x^3 + 3x^2 + 3x + 1$$

16. If
$$n \in \mathbb{N}$$
, then $\sum_{m=1}^{n} m2$ is equal to:

(1)
$$\underline{m(m+1)(2m+1)}$$

	6	<u> /</u>		
	(3) $\underline{m((m-1)(}$	<u>2m-1)</u>		
	$ \begin{array}{c} 6 \\ (4) \ \underline{n(n+1)(2n-1)} \\ \end{array} $	n±1)		
	6 (4) <u>II(II+1)(2I</u>	<u>1+1)</u>		
17. If a		I. between two	numbers are	27 and 12 respectively then their
		(2) 18	(3) 24	(4) 36
18. If	$\frac{1}{q+r}$,	$\frac{1}{r+p}$,	$\frac{1}{p+q}$, ar	re in A.P. then :
	(1) p2,q2, r2 a (2) p,q,r are in (3) p,q,r are in (4) 1, 1, q	n A.P. n G.P. 1_ are in A.P.		
19. If	αcand ββare t	he roots of the	e equation x^2	$-ax + b = 0$ and $v_n = \alpha^n \alpha + \beta^n \beta$ then:
	$(1) v_{n+1} = av_n$	$+ bv^{n-1}$	•	- 11
	(2) $v_{n+1} = bv_n$ (3) $v^{n+1} = av_n$	$-av_{n-1}$		
	(3) $v^{n+1} = av_n$ (4) $v^{n+1} = bv_n$	$-bV_{n-1}$		
20. If			e equation 5x	$x^{2}+13x+k=0$ then k will be:
20,11	$\frac{1}{\alpha\alpha}$		o equation on	V VIII V
	(1) 5	(2) - 5	(3) 13	(4) 1
21. Th	ie value i³-i⁵-i¹	⁰ -i ¹⁶ will be :		
	(1) 0	(2) i	(3) - 2 - 2i	(4) 2 - 2i
			mes then the	probability that the head appears m
unies	continuosly is (1) m + n		(3) m	(4) $m + 2$
	$\frac{1}{2^{m+n}}$	$(2) \frac{n+2}{2^{m+1}}$	$\frac{1}{2^{m+n}}$	$\frac{2^{n+1}}{2^{n+1}}$
23. Fo P(A) is	•	nts A and B if	$\mathbf{P}(\mathbf{A} \cup \mathbf{B}) = 5A$	1 /6, P(A ∩ 1 B) = 1/3, P(B) = 1/2 then
	$(1) \frac{1}{2}$	(2) 2/3	(3) 1/3	(4) none of these
24. If I event		nny two events	, then the pro	obability of happening exactly one
	(1) P(M) + P((2) P(M) + P(
	(3) P(M) + P(N) + 2P(MN)		

25. A bag contains 3 white and 5 black balls. One ball is drawn at random	. Then the
probability that it is black is:	

26. A box contains 100 bulbs, out of these 10 are used. 5 bulbs are choosen at random. Then the probability that no one is fused is:

 $(1) \left[\frac{9}{10} \right]^5 \qquad (2) \frac{90}{100} \frac{C_5}{C_5} \qquad (3) \left[\frac{1}{2} \right]^5$

 $(4) 10^{-5}$

27. For any two events A and B the correct statement is:

(1) $P(A \cap B) \le P(A) + P(B)$

(2) $P(A \cap B) \le P(A) + P(B) -1$

(3) $P(A \cap B) \ge P(A) + P(B) -1$

 $(4) P (A \cap B) \ge P (A) + P (B)$

28. For any non zero vector a the correct statement is:

ightarrow
ightarro

(1) $a \cdot a \le 0$ (2) $a \cdot a = 0$ (3) $a \cdot a > 0$ (4) $a \cdot a \ge 0$

 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

29. a. (b x c) = 0 then the correct statement is:

 $\rightarrow \rightarrow \rightarrow$

(1) out of a, b, c any two vectors are parallel

 $\rightarrow \rightarrow \rightarrow$

(2) a, b, c are coplanar

 \rightarrow \rightarrow \rightarrow

(3) any two are equal a, b, c

(4) at least one above statement is correct

30. If $A \times B = 0$ where A and B are non zero vectors then:

(1) A and B are perpendicular to each other

(2) the angle between A and B is π

(3) A and B parallel vectors

(4) B is unit vector

^^ ^^ ^^

$$(1) -$$

$$(1) - 3$$
 $(2) - 2$ $(3) - 1$ $(4) 0$

$$(3) - 1$$

32. If $\frac{d}{dx}$ $\phi(x) = f(x)$ then $\int_{1}^{2} f(x) dx$ is equal to:

$$(1) f(1) - f(2)$$

$$(2) \phi(1) - \phi(2)$$

(1)
$$f(1) - f(2)$$
 (2) $\phi(1) - \phi(2)$ (3) $f(2) - f(1)$ (4) $\phi(2) - \phi(1)$

33. If f(a-x) = f(x), then $\int_{a}^{a} xf(x) dx$ is equal to:

$$(1)$$
 $\int_{0}^{a} f(x)dx$

(1)
$$\int_{0}^{a} f(x)dx$$
 (2) $\int_{0}^{a/2} f(x)dx$ (3) $\int_{0}^{a} f(x)dx$ (4) none of these

(3)
$$a f(x) dx$$

34. $\int_{0}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$ when :

$$(1) f(2a-x) = -fx$$

(2)
$$f(2a-x)=f(x)$$

(1)
$$f(2a-x) = -fx$$
 (2) $f(2a-x)=f(x)$ (3) $f(-x)=-f(x)$ (4) $f(-x)=f(x)$

35. $\int_0^{\pi} |1-x| dx$ is equal to:

(1) 0 (2) 1 (3)
$$\frac{3}{2}$$
 (4) $\frac{1}{2}$

$$(4) \frac{1}{2}$$

36. For any integer n the value of $\int_{0}^{\pi\pi} e^{\cos 2} \cos^{3} (2n+1)x dx$ will be:

(1)
$$e^2$$
 (2) 0

37. $\frac{\sin 2x}{\sin^4 x + \cos^4 x}$ dx is equal to :

(1)
$$2 \tan^{-1} (\tan^2 x) + C$$

(2) $\tan^{-1} (x \tan^2 x) + C$
(3) $\tan^{-1} (\tan^2 x) + C$

(2)
$$\tan^{-1}(x \tan^2 x) + C$$

(3)
$$\tan^{-1}(\tan^2 x) + C$$

38. $\frac{1}{v^5}$ dx is equal to :

(1) -
$$\frac{1}{5x^4}$$
 + C (2) - $\frac{1}{5x^6}$ + C (3) - $\frac{1}{4x^4}$ + C (4) $\frac{-5}{x^6}$ + C

$$(2) - \frac{1}{5x^6} + 0$$

$$(3) - \frac{1}{4x^4} + 0$$

$$(4) \frac{-5}{x^6} + C$$

$(1) \ \frac{\pi}{6} \qquad (2)$	$\frac{\pi}{4}$ (3) $\frac{\pi}{3}$	$(4) \ \underline{\pi} \ 2$				
	a curve is paralle	l to axis of x, then	the correct statement			
$ \begin{array}{c} \mathbf{is:} \\ (1) \underline{dx} = -1 \\ \mathbf{dy} \end{array} $	$\begin{array}{cc} (2) & \underline{dx} \\ dy \end{array} $	$\frac{dx}{dy} = 0$	$ \frac{dy}{dx} = 0 $			
41. $\frac{d}{1}$ sin ⁻¹ x is equal to	·:					
$\mathbf{dx} \tag{1} - \frac{1}{\sqrt{x^2 - 1}}$	$(2) \frac{1}{\sqrt{x^2 - 1}}$	(3) $\frac{1}{\sqrt{1-x^2}}$	(4) - $\frac{1}{\sqrt{1-x^2}}$			
42. The differential co (1) $2x^3e^{x^3}$	perfection of e^{x-3} is $(2) 3x(e^{x^3})$	$(3) e^{x^3}$	(4) $3x^2e^{x^3}$			
43. $\frac{d}{dx}(x^x)$ is equal to:						
	(2) $x^x \log ex$	(3) log ex	$(4) x^{x} \log x$			
44. $\lim_{x\to a}$ [f(x),g(x)] will ex	ist, when:					
(1) $\lim_{x \to a} \frac{f(x)}{g(x)}$ is e	xists					
$(2) \lim_{x \to a} [f(x)]^{g(x)}$	is exists					
(3) $\lim_{x\to a} f(x)$ or	$\lim g(x)$ is exists					
(4) $\lim_{x\to a} f(x)$ and	$\lim_{x \to a} g(x) \text{ both exis}$	its				
45. $\lim_{x\to 0\to} \frac{\sin x}{x}$ is equa	l to:					
(1) 2 (2)	-1 (3) 1	(4) 0				
46. If $f(x) = \sin [x]$, $[x] \neq 0$ where $[x]$ is a greatest integer less or equal to x then $\lim_{x\to 0} f(x)$ is equal to :						
(1)-1 (2)	(3) 1	(4) does not	exist			

be:

- $(1) \{1, \pm 2, \pm 5\}$
- $(2) \{1,2,5\}$ $(3) \{-2,-1,0,1,2\}$ (4) none of these

48. The point (at3, at2) will lies on the curve :

(1)
$$x^3 = ay^2$$

(2)
$$x^2 = ay$$

(3)
$$y^2 = ac$$
 (4) $y^3 = ax^2$

(4)
$$v^3 = ax^2$$

49. The diameter of the circle $x^2 + y^2 + 4x - 6y = 0$, is:

- (1) $\sqrt{52}$
- (2) $\sqrt{13}$ (3) $\sqrt{26}$ (4) $\sqrt{20}$

50. The pole of the line $\tau x + my + n = 0$ w.r.t. the circle $x^2 + y^2 = a^2$ is :

$$(1)\left(-\frac{\mathbf{n}}{1}\mathbf{a}^2, -\underline{\mathbf{n}}\mathbf{a}^2\right)$$

$$(2) \left(-\frac{a}{na^2}, \frac{m}{ma^2} \right)$$

$$(3)\left(-\frac{1}{n}a^2, \underline{m}a^2\right)$$

$$(4) \left\{ \frac{1}{n} a^2, - \underline{m} a^2 \right\}$$

51. Two dice thrown together then the probability of getting a sum of 7, is:

- (1) <u>7</u> 36
- (2) <u>6</u> 36
- (3) <u>5</u> <u>36</u>
- (4) <u>8</u> 36

52. For any two events A and B, $P(A \cap B)$ is equal:

$$(1) P(A) - P(A \cap B) \qquad (2) P(A) - P(A \cap B)$$

(3)
$$P(A) - P(A \cup B)$$
 (4) $P(A) + (A \cap B)$

53. If A and B are two events, then P(A / B) is equal to :

(3)
$$1 - P(AB)$$
 (4) $1 - P(A/B)$

54	If A	<∕R	then	\mathbf{R} ι	л 🛕	will	he	
24.	ΠА	. ≥∞.	uien	\mathbf{D}	J(A	will	ne	

- (1)[0]
- $(2) \phi \qquad (3) A$
- (4) B

55. $P(A \cup B)$ is equal:

- (1) <u>P(A)</u> $P(A \cup B)$
- (2) $P(A \cap B)$ $P(A \cap B)$
- $(3) \ \underline{P(A)}$ $P(A \cup B)$

56. The period of $\sin^4 x + \cos^4 x$ will be :

- (1) 3π
- (2) 2π
- (3) π
- $(4) \ \underline{\pi}$

$$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$$

57. $a \times (b \times c)$ is equal to:

$$ightarrow
ightarrow
ightarro$$

$$ightarrow
ightarrow
ightarro$$

$$(2) (a.c) b + (a.b).c$$

$$ightarrow
ightarrow
ightarro$$

$$(3) (a.b) c + (a.b).c$$

$$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$$

$$(4) (a.b) c - (a.c).b$$

The angle between the vectors (i+j) abd (j+k) is

- (1) $\underline{\pi}$ 4

59. The area of the region bounded by the curves $y = x \sin x$, axis of x, x = 0 and $x = 2\pi\pi$ will be:

- $(1) 8\pi$
- (2) 4π
- (3) 2π
- $(4) \pi$

60. $\int_{0}^{\infty} \log \sin x \, dx$ is equal to :

(1)
$$\pi \log \left(\frac{1}{2}\right)$$
 (2) $\pi \log 2$ (3) $\pi \log \left(\frac{1}{2}\right)$ (4) $\frac{\pi}{2} \log 2$

$$(3) \pi \log \left(\frac{1}{2}\right)$$

$$\begin{array}{c} (4) \ \underline{\pi} \log 2 \\ 2 \end{array}$$

b

61. f(x) dx is equal to

(1) f(x-a-b) dx (2) f(a-x)dx (3) f(a+b-x)dx (4) none of these

πt	12								
62. ₀	sin	2x log ta	n x dx is	s equal to):				
		2π π π	(2) π	(3) 0	(4	4) $\pi/2$		
	63.	$\cos^3 x d$	lx is equ	al to :					
	,	(1) 4π π /2	;	(2) 2π	($(3) \pi$	(4) ()	
		0 1+	<u>1</u> √√tan x	_dx is	equal t	o:			
	65.	cot x dx (1) log ta (3) log co	x is equa in x + C osec x +	(2) log s 4) log s	sec x + C sin x + C			
	66.	If $z = x +$	y iy the	en z – 5	is equa	d to:			
		$(1)\sqrt{(x-1)}$	• /	,	,		•		
		$(3)\sqrt{x^2}$	$+(y-5)^2$	(4) $\sqrt{(x)}$	$(-5)^2 + ($	$(y-5)^2$		
	67.	If ααnd equal is	•	e roots	of the e	equation	$4x^2 + 3x -$	+ 7 = 0 the	$\frac{1}{\alpha\alpha} + \frac{1}{\beta\beta}$ is
		(1) 7/3	_	(2) <u>2</u> 7	((3) <u>-3</u> 7		(4) <u>3</u> 7	
	68.	2,357 is (1) 2379 999	equal to —	: (2) <u>2355</u> 999		(3) <u>2355</u> 997	(4) r	none of thes	se
	69.	If the sec its first t			.P. is 2	and the	sum of its	s infinite te	erms is 8, then
		(1) 2		(2) 4	((3) 6	(4) 8	3	
	70.	(1+2+3+	+n) is	s equal to):				
		$(1) \left(\frac{\mathbf{n}(\mathbf{n} + \mathbf{n})}{2} \right)$	- 1)2	(2) n ²	((3) <u>n(n -</u>	<u>+ 1) </u>	(4) <u>n(n-</u> 2	<u>1)</u>

71. For $n \in \mathbb{N}$, 2^{3n} - 7n - 1 is divisible by:
(1) 50
(2) 49
(3) 51
(4) 48

72. If
$$x = 2 + 2^{1/3} + 2^{2/3}$$
, then $x^3 - 6x^2 + 6x$ is equal to :

73. If $(1-x)^n = C_0 + C_1x + + C_nx^n$ then $C_1 + 2C_2 + 3C_3 + + nC_n$ is equal is

(1) $n.2^{n-1}$ (2) $(n-1)^{2n-1}$ (3) $(n+1)^{2n}$ (4) $2^{n-1}-1$

74. Determinate $\begin{vmatrix} 1+ib & c+id \\ c-id & a-ib \end{vmatrix}$ is equal to:

(1) $a^2-b^2+c^2+d^2$ (2) $a^2+b^2-c^2-d^2$ (3) $(a^2+b^2)(c^2+d^2)$ (4) (a+b)(a-b)

75. $\begin{vmatrix} 43 & 1 & 6 \\ 35 & 7 & 4 \\ 17 & 3 & 2 \end{vmatrix}$ is equal to:

(1) - 6 (2) - 110

(3) 0

(4) 150

76. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then A2 is equal to:

 $\begin{pmatrix}
1 & \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
2 \end{pmatrix} \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
3 \end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
4 \end{pmatrix} \begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}$

77. If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ then A^n is equal to:

 $(1) \begin{pmatrix} 1 & n^{n} \\ 0 & 1 \end{pmatrix}$ $(2) \begin{pmatrix} n & n \\ 0 & n \end{pmatrix}$ $(3) \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ $(4) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

78. If A and B are the invertible matrix of the required order then the value of (AB) -1 will be: (2) $A^{-1}B^{-1}$ (3) $B^{-1}A^{-1}$ (4) $(BA)^{-1}$

 $(1) [(AB)']^{-1}$

79. The value of sin 3x is:

e value of sin 3x is: $(1) 4 \sin x - 3 \sin^3 x$ $(2) 4 \sin x + 3 \sin^3 x$ $(3) 3 \sin x - 4 \sin^3 x$ $(4) 3 \sin x + 4 \sin^3 x$

80. The imaginary roots of $(-1)^{1/3}$ is:

(1) $\frac{1 \pm \sqrt{3i}}{4}$ (2) $\pm i$ (3) $\frac{-1 \pm \sqrt{3}}{2}$ (4) $\frac{1 \pm \sqrt{3i}}{2}$

81. The argument and modulus of the $e^{\sin i\theta}$ is:

(1) 1, $\sin h\theta$

(2) 1, $\pi/2$

(3) $e^{\cos \theta}$, $\sin h\theta$ (4) $e^{\sin \theta}$, $\sin h\theta$

82. The minimum distance of a point (x, y) from a line ax + by + c = 0, is:

(1)
$$\frac{|ax^2 + b^2|}{\sqrt{a^2 + b^2}}$$
 (2) $\frac{|ax^2 + b^2|}{\sqrt{a^2 + b^2 + c^2}}$ (3) $\frac{|ax^2 + b^2|}{\sqrt{a^2 + b^2 + c^2}}$ (4) $\frac{|ax^2 + b^2|}{\sqrt{a^2 + b^2 + c^2}}$

83. A straight line through (1, 1) and parallel to the line 2x + 3y - 7 = 0 is:

(1)
$$2x + 3y + 5 = 0$$

(2) $3x - 2y + 7 = 0$
(3) $3x + 2y - 8 = 0$
(4) $2x + 3y - 5 = 0$

$$(2) 3x - 2y + 7 = 0$$

$$(3) 3x + 2y - 8 = 0$$

$$(4) 2x + 3y - 5 = 0$$

84. Equation of the straight line passing through the points (-1, 3) and (4, -2) is:

(1)
$$x - y = 3$$

(1)
$$x-y=3$$
 (2) $x+y=3$ (3) $x-y=2$ (4) $x+y=2$

$$(4) x + y = 2$$

85. The general equation of circle passing through the point of intersection of circle S = 0 and line P = 0, is:

(1)
$$S + \lambda P = 0, \lambda \in R$$

$$(2) 6S + 4P = 0$$

$$(4) 4S + 5P = 0$$

(3)
$$3S + 4P = 0$$

$$(4) 4S + 5P = 0$$

86. The equation of the radial axis of two circle $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$, is :

(1)
$$2(g_1 - g_2) x + 2(f_1 - f_2) y - c_1 - c_2 = 0$$

(2)
$$2(g_2 - g_1)x + 2(f_1 - f_2)y + c_1 - c_2 = 0$$

(3)
$$2(g_1-g_2)x + 2(f_1-f_2)y + c_1 - c_2 = 0$$

(4)
$$2(g_1-g_2)x + 2(f_1-f_2)y + c_2 - c_1 = 0$$

87. If $f(x) = \cos(\log x)$, then $f(x) f(y) - 1 [f(\underline{x}) - f(xy)]$ is equal to :

$$(2) f(x+y)$$

(2)
$$f(x+y)$$
 (3) $f(\underline{x})$ (4) $f(xy)$

$$(4) f(xy)$$

88. If $f(x) = \frac{x}{x-1} = y$, then the value of f(y) is:

$$(1) 1 - x$$

(1)
$$1-x$$
 (2) $x+1$ (3) $x-1$ (4) x

$$(3) x - 1$$

89. $\lim_{n \to \infty} \frac{1^2}{13 + n^3} + \frac{2^2}{23 + n^3} + \frac{1}{2n}$ is equal to :

(1)
$$\frac{1}{2} \log 2$$
 (2) $3 \log 2$ (3) $\frac{1}{3} \log 2$ (4) $\frac{1}{2} \log 3$

$$(2) 3 \log 2$$

$$(3) \frac{1}{2} \log 2$$

(4)
$$\frac{1}{2} \log 3$$

90. $\lim_{x \to x} \frac{x2 - a2}{x - a}$ is equal to:

91. $\frac{d}{dx}$ (2 x) is equal to :

	(1) 1	(2	$2) 2^{x} \log$	2 (3)	x log 2	(4) 0				
	92. Diffe	erential	coefficie	ent of x^3	w.r.t. x ²	² will be	:			
	(1) $\frac{3}{2x}$	(2	2) <u>2</u>	(3)	3 x	(4) <u>3</u>	$\frac{x^2}{x}$			
	2x		3x		2	2	,			
	93. $\frac{d}{dx}$ (tan x) is equal to:									
	(1) cosed	$c^2 x$	(2)	sec x ta	ın x	(3) co	osec x co	ot x	$(4) \sec^2$	X
	94. The coordinates of the point where the tangent to the curve $x^2 + y^2 - 2x - $									
			to the a				~			
	$(1) 1. \pm 1$	√3 (2	2) (1,0)	(3)	$1, \pm 2$	(4) (1	1. ±√ 2)			
	95. The the x-ax	_	which t	angent	to the cu	ırve y =	$\tau \tau^{2x}$ at t	he point	t (0, 1) n	neets
	(1) (1, 0)		(2)	(- ½, 0)	(3) ((2,0)	(4) (0	, 2)		
	96. Max	rimum v	alue of s	done of	a tanger	nt to the	curve v	$= - x^3 +$	$3x^2 + 2$	x = 27
	will be:		arac or s	nope or	a tanger	n to the	cui ve j	— A 1	JA 2	2 2 1
			2) – 4	(3)	5	(4) 2				
	97. m si	<u>in √x</u> √x	_ dx is o	equal to	:					
	(1) - 2 c	$\cos \sqrt{x} +$	C (2)	2 cos √	$\overline{x} + C$	(3) 2	$\sin \sqrt{x}$	+ C	(4) sin ²	$\sqrt{x+C}$
	98. Cor (1) (AB)	rect stat $0^{-1} = B^{-1}A$	ement is A ⁻¹ (2) ($AB)^{-1} =$				⁽⁴⁾ (4) (Al	$3)^{-1} = A^{-}$	1 B $^{-1}$
	99. If the statement			2	and	$\mathbf{Q} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$		ien the c	correct	
	(1) P+	Q = I	(2) PQ ≠	-	(3) (NSWER	$Q^2 = Q$ SHEE '	(4) P ²	= P		
1.(1)	2.(4)	3.(4)	4.(4)	5.(4)	6.(3)	7.(2)	8.(4)	9.(1)	10.(3)	11.(2)
12.(2)	13.(4)	14.(2)	15.(4)	16.(4)	17.(2)	18.(1)	19.(3)	20.(1)	21.(4)	22.(2)
23.(2)	24.(2)	25.(3)	26.(2)	27.(3)	28.(3)	29.(4)	30.(3)	31.(2)	32.(4)	33.(2)
34.(4)	35.(2)	36.(2)	37.(3)	38.(1)	39.(2)	40.(3)	41.(3)	42.(4)	43.(2)	44.(4)
45.(3)	46.(4)	47.(2)	48.(4)	49.(1)	50.(4)	51.(2)	52.(1)	53.(2)	54.(4)	55.(2)
56.(4)	57.(1)	58.(4)	59.(2)	60.(3)	61.(3)	62.(3)	63.(4)	64.(4)	65.(4)	66.(2)
67.(3)	68.(2)	69.(2)	70.(3)	71.(2)	72.(3)	73.(1)	74.(2)	75.(3)	76.(3)	77.(3)
78.(3)	79.(3)	80.(4)	81.(1)	82.(1)	83.(4)	84.(4)	85.(1)	86.(3)	87.(4)	88.(4)
89.(3)	90.(4)	91.(4)	92.(3)	93.(4)	94.(3)	95.(2)	96.(3)	97.(1)	98.(1)	99.(2)

RAJASTHAN P.E.T. **PHYSICS – 1995**

1. The field at distance r from the center of a charge conducting sphere of radius R and charge Q is given by the expression (r < R):

(2) $\frac{KQ}{R^2}$

(4) zero

2. An electron of 10 eV kinetic energy will travel the distance through an electric field 0.25 N/C:

(1) 2.5 m

(2) 20 m

(3) 4 m

(4) 40 m

3. The length of potentiometer wire is 10 cm. and resistance is 0.005 $\Omega \Omega$ m. A battery of 2 Volt enf and 1.5 Ω Internal resistance is connected to the wire will

(1) $4 \times 10^{-4} \text{ v/cm}$.

(2) 0.05 v/cm. (3) 0.5 v/cm.

(4) 0.005 v/cm.

4. Two coils are placed very near to each other. If the current in primary coil is I = I0 sin word coefficient of mutual induction is M, the induced emf in secondary coil will be:

(1) $E = I_0 \omega \cos \omega t$ M

(2) $E = I_0 \omega \cos \omega t$ (3) $E = MI_0 \omega \cos \omega t$ (4) $E = -MI_0 \omega \cos \omega t$ M

- 5. Choke coil is:
 - (1) induction coil of high resistance and high inductance
 - (2) induction coil of high resistance and low inductance
 - (3) induction coil of low resistance and high inductance
 - (4) induction coil of low resistance and low inductance
- 6. The voltage difference between P and Q is:

(1) 2 volt

(2) 1 volt

(3) - 1 volt

(4) - 2 volt

7. In the circuit current in $8\Omega\Omega$ esistance is :

- (1) 2 amp.
- (2) 1 amp.
- (3) 0.5 amp.
- (4) 1.25 amp.
- 8. Which is correct for inside charged sphere:
 - (1) $E \neq 0$, V = 0
- (2) E=0, V=0 (3) $E\neq 0$, $V\neq 0$ (4) E=0, V=0

- 9. The magnetic force experienced charge q in magnetic field moving with velocity V, will maximum when the angle between V and B is:
 - $(1) 0^0$
- $(2) 45^{0}$
- $(3) 90^0$
- $(4) 180^{0}$
- 10. A parallel plate condenser is charged with a battery. After changing of the condenser battery is removed and two plates are separated from each other with the help of insulating handles, than:
 - (1) capacitance decreases
 - (2) capacitance increases
 - (3) charge on plates increases
 - (4) voltage between plates increase
- 11. The electrical flux from a semi spherical will be :

- $(1) \pi R^2 E$
- $(2) \frac{4}{3} \pi R^2 E$
- (3) $2\pi R^2 E$
- (4) $2\pi RE$
- 12. In closed organ pipe the produced harmonics are:
 - (1) no harmonics is produced
 - (2) even and odd both
 - (3) odd only
 - (4) even only
- 13. In this wave equation Y = $5 \sin 2\pi \pi (4t 0.02x)$ the wave velocity of wave is:
 - (1) 50 m/sec.
- (2) 150 m/sec.
- (3) 200 m/sec.
- (4) 100 m/sec.

14.	_	y in vacuum o				
	(1) wavelengt	h (2) from	equency	(3) intensity	y (4) none of these	
15.	volt, the coef	ficient of self i	induction wil	l be:	and the induced enf is	8
	(1) 8H	(2) 0.02 H	(3) ().2 H (4) (0.8 H	
16.	pass through voltmeter of	it 0.001 A. Tl 12 volt range	ne value of sh will be :	unt to change	num current which can e this galvanometer into (4) 11,990 Ω	
17.		the circuit the $\frac{E_0}{2}$ $\frac{E_0}{\sqrt{2}}$ $= E_0$	_		t), if an inductance is the circuit will be:	
18.		rrent phase di (2) π/2			and voltage is :	
19.	in its third or	rbit will be :		13.6 eV. The t	cotal energy of an electr - 1.5 eV	on
20.		_	ion the eleme	ent shift by one	e place further after the	e
	emission of the (1) α-particle		particle	(3) γ-particl	le $(4) \alpha, \beta$ and γ	all
21.	incident on the		surface the	energy of the	nt of 4 eV are made to emitted photons will be):
22.	in the positio	tron $m_e = 10^{-2}$ on of electron with $(2)10^{-8}$ m	will be of the	order of:	n = 10 ⁻³⁴ , the uncertaint	y
23.		nergy gap in G (2) 2.5 eV		(4) 5 eV		
24.	_	gth L and mas he time period	_		one end and execute	

25. Two masses m_1 and m_2 are attached to the ends of a string by a weight loss rod of length r_0 . The MI of this system about the axis passing through the center of mass and perpendicular to its length will be:

$$\left(\begin{array}{ccc} \mu \ 0 = & \underline{m_1 \ m_2} \\ & m_1 + m_2 \end{array} \right)$$

$$(1) \ \mu_0 r_0^2 \qquad (2) \ \mu_0 r \qquad (3) \ \mu_0 r^2 \quad (4) \ \mu_1 r_0^2$$

26. The energy of monatomic gas is:

- (1) only rotational (2) only vibrational (3) only translatory (4) all the above
- 27. The work done in increasing the size of a bubble by 10^{-2} m² (T = 25 dyne 1 cm.) : (1) 0.4×10^{-4} erg (2) 50×10^{2} erg
 - (1) $0.4 \times 10^{-4} \text{ erg}$ (2) $50 \times 10^{2} \text{ erg}$ (3) $25 \times 10^{2} \text{ erg}$ (4) $25 \times 10^{-2} \text{ erg}$

28. A geostationary satellite is at a distance of 8 Re revolving around the earth and another satellite is revolving round the earth at 3.5 Re distance, its revolution period will be:

(1) 8.5 hrs. 92) 16.5 hrs. (3) 18 hrs. (4) 12 hrs.

29. The work done per unit extension in length of a wire will be (L = length, A = area of cross section):

30. The total energy of a body at distance r from the earth will be :

$$\begin{array}{cccc} (1) - \underline{Gm_em} & (2) - \underline{Gm_em} & (3) \underline{Gm_em} & (4) \underline{Gm_em} \\ r & 2r & 2r & r \end{array}$$

31. The kinetic energy of a particle executing SHM is changed by frequency f, the frequency of its motion will be:

(1) mv	$(2) \frac{\text{mv}^2}{4\text{g}}$	(3)	$\frac{\text{mv}^3}{4\sqrt{2g}}$	(4) <u>m</u> 2	<u>v</u>
	_	-		•	ehight h and than nd to another will
	(2) <u>1 mgh</u> 2	(3)	mgh	(4) zero	
	ılar velocity und ılar momentum	-			
rest. After the velocity of the control of the cont	ving with 50 m the collision th the second bod c. (2) 6 of a circular a	l/sec. Velocity e velocity of fi ly will be: 0 m/sec. perture is var	(3) 80	changes to 30 m/sec. (4) 50 me light of $\lambda \lambda w$) m/sec. avelength is
rest. After the velocity of the control of the cont	ving with 50 m the collision th the second bod c. (2) 6 of a circular a cident on the a When one incre perture for wh be:	e/sec. Velocity e velocity of fi ly will be: i0 m/sec. perture is var- perture a scre eases the radiu ich second time	(3) 80 iable. Then is places of the ane dark p	changes to 30 m/sec. (4) 50 me light of λλwaced at distance aperture, the point will be of	o m/sec., the o m/sec. avelength is e b from the value of the
rest. After the velocity of the control of the cont	ving with 50 m the collision th the second bod c. (2) 6 of a circular a cident on the ay When one incre	e/sec. Velocity e velocity of fi ly will be: i0 m/sec. perture is var- perture a scre eases the radiu ich second time	(3) 80 iable. Then is places of the ane dark p	changes to 30 m/sec. (4) 50 me light of λλwaced at distance aperture, the point will be of	o m/sec., the o m/sec. avelength is e b from the value of the
rest. After the velocity of the control of the radius made to incomperture. We radius of a screen will (1) $\sqrt{b\lambda}$	ving with 50 m the collision th the second bod c. (2) 6 of a circular a cident on the ap When one incre perture for wh be: (2) $\sqrt{3b\lambda}$	A/sec. Velocity e velocity of filly will be: a m/sec. perture is variable a screen as the radius ich second time (3) $\sqrt{4b\lambda}$ The wire is τ and	(3) 80 iable. Then is placed is of the same dark properties $(4) \sqrt{2}$	changes to 30 m/sec. (4) 50 me light of λλwaced at distance aperture, the point will be of linbλ	m/sec., the m/sec. m/sec. avelength is b from the value of the btained on the
rest. After the velocity of the control of the radius made to incomperture. We radius of a screen will (1) $\sqrt{b\lambda}$	ving with 50 m the collision that the second bode. (2) 6 of a circular acident on the apythen one increperture for what the collision of a sonometer tension on son	e velocity e velocity of filly will be: 60 m/sec . perture is varieties a screen a screen a screen a screen a screen and time $(3) \sqrt{4b\lambda}$ r wire is τ and ometer wire a	(3) 80 iable. The en is placed is of the entire dark properties (4) $\sqrt{2}$	changes to 30 m/sec. (4) 50 m/sec. (4) 50 me light of $\lambda \lambda w$ ced at distance aperture, the point will be of $\lambda \lambda w$. The and frequence of the frequency of t	m/sec., the m/sec. m/sec. avelength is b from the value of the btained on the
rest. After the velocity of the color of th	ving with 50 m the collision that the second bode: (2) 6 of a circular acident on the apythen one increperture for what the control of a sonometer tension on son (2) $\frac{n}{2}$ of approximate	e velocity of filly will be: 60 m/sec. perture is varies a screen as the radiu ich second time (3) $\sqrt{4b\lambda}$ r wire is τ and ometer wire a (3) $\sqrt{2n}$ rely equal frequence of the second second in (3) $\sqrt{2n}$	(3) 80 (3) 80 iable. The sis places of the sis of the sine dark properties and the sis of the si	changes to 30 m/sec. (4) 50 m/sec. (4) 50 me light of $\lambda \lambda w$ ced at distance aperture, the point will be of $\frac{1}{2}$ and frequence the frequence once in 1 sec.	o m/sec., the o m/sec. avelength is e b from the value of the btained on the ncy is n. If the ncy will become:

40. If charge Q is placed at the	center of a cube,	the emergent i	flux from (one of the
face of the cube will be				

- (1) \underline{Q} (2) \underline{Q} (3) \underline{Q} (4) \underline{Q} ε_0
- 41. Two equal charges each of value q are placed on a straight line, another charge Q is placed at mid of the distance between the system will be most stable is :
- **42.** An electron passes through an electric field 3200 v/m. of length 0.1 m. with speed 4 x 10⁷ m/sec. The deflection produced in the path of electron will be:

 (1) 3.52 mm.

 (2) 1.35 mm.

 (3) 0.88 mm.

 (4) 1.76 mm.
- 43. A rectangular coil placed in a magnetic field 0.25 T. The area of coil is 96 x 10-4 m2, no. of turns are 50 and current is 2A, the torque experienced by the coil will be:

- (1) 0.24 N-m.
- (2) 0.48 N-m.
- (3) 0.36 N-m. (4) 0.96 N-m.

44. If two charged conductors are short circuited by a wire, the current will now flow:

- (1) sizes are equal
- (2) capacitances are equal
- (3) charges are equal
- (4) potential are equal
- 45. Two coils X and Y are placed near to other according to the figure. If current is passed through X, the direction of induced current in Y will be:

		P	Q	
	(1) carit be determined (3) Q to P		induce	
46.	Which quantity doesn't rem	nains constan	_	
	(1) time period (2) velo	ocity (3) fre	equency	(4) amplitude
47.	A pot filled with water is reminimum velocity at which			
	$(1) gR \qquad (2) \sqrt{2gR}$	$(3)\sqrt{Rg}$	$(4)\sqrt{5\mathrm{gr}}$	
48.	A spring is extended by then $(1) F = \underline{k} \qquad (2) F = kt$ t	ingth, then the (3) $F = \frac{k}{t^2}$	e force is: $(4) F = \frac{k^2}{t}$	
49.	The velocity at which a body of earth R_e = radius of earth		from the earth	surface is $(M_e = mass)$
	$V \le \sqrt{\frac{2GM_e}{R_e}} \qquad (2) V \ge \frac{1}{2}$			
(3)	$V \le \sqrt{\frac{GM_e}{R_e}} $ (4) $V \ge \frac{1}{2}$	$ \frac{\sum \sqrt{GM_e}}{R_e} $		
50.	The initial temperature of a 1/9 th of its initial volume, the (1) 627 ⁰ K (2) 627 ⁰ C	e final temp.	of the gas will	
51.	The workdone in expanding pressure will be:	g a gas from 1	0 m ³ to 20 m ³	at one atmospheric
	(1) $10^6 \mathrm{J}$ (2) $10^3 \mathrm{J}$	$(3) 10^2 J$	$(4)\ 10^5\ J$	
52.	The mean kinetic energy of (1) Hydgrogen (2) Oxy		at a given tem elium (4) Eq	
53.	Kind of bonding in H₂ is : (1) covalent (2) van	der waals	(3) ionic	(4) metallic
54.	The density of iron is 7 x 10 max, length of the wire whi			
	weight will be: $(1) 10^5 M$ $(2) 10^3 M$	$(3) 10^4 M$	(4) 10^2 M	

55.	same cross so will be max. $\leftarrow 2r \rightarrow \uparrow $	ectional area, to for the body (to +2r -> r	the MI a the axis ←2r	about the is perper \rightarrow \uparrow $2r$ \downarrow	axis shown	ave same mass and by a point in the figure ne plane of the bodies) :
56.	cylinder is 0.	1 kg. The velo	city at t	the bottor	n of the incli	m. If the mass of ned plane will be:
	(1) 3.5 m/sec.	(2) 2 1	m/sec.	(3) 1.4 n	n/sec.	(4) 2.4 m/sec.
57.	and 4 cm. are (1) small (2) both w (3) both w		e end o f luce and	f the glass l large wil	s tube. If one l increase	oubbles of radius 2 cm. e opens the stopper :
58	A 500 uF can	acitor is char	oed witl	h a hatter	v of 100 vol	t and it is discharged
20.		2@esistance th	_		•	_
	(1) 1.25 J	(2) 5 J	(3) 10		4) 2.5 J	
59.	total charge	sers of 1 μ μ ar on condensers (2) 2.5 μC	will be	:		oattery of 6 volt, the
60	Transformer	· changes ·				
00.	(1) DC curren	O	C voltag	ge (3) AC	voltage (4)	AC & DC voltage
(1) DC current (2) DC voltage (3) AC voltage (4) AC & DC voltage 61. Lenzis law is based upon: (1) law of conservation of energy (2) law of conservation of angular momentum (3) law of conservation of momentum (4) law of conservation of charge						
62.	Two thin wir	es are separat	ted by d	listance r	and parallel	to each other. If the
						rienced by one wire due
	to current in	the other will	be:		_	
	$(1)\underline{\mu_0}\underline{I^2}$	$(2) \underline{\mu_0} \underline{I^2}$	(3) $\mu_0 I$	_ (4) <u>μ₀Ι²</u>	
	$2\pi r2$	$4\pi r$	2π		$2\pi r$	

63	. The relation	between	current a	ınd ma	ıximum	current	I _m at	half j	power	points	in
	reconant circ	mit will b	16 •								

resonant circuit will be :
(1)
$$I = \underline{I_m}$$
 (2) $I = I_m \sqrt{2}$ (3) $I = \underline{I_m}$ (4) $I = \underline{I_m}$ $\sqrt{2}$

$$(3) I = \underline{I}_{\underline{m}}$$

$$(4) I = \underline{I}_{\underline{m}} \sqrt{2}$$

64. In LCR circuit the voltage and current are given by the equations: $E = E_0 \sin \theta$ wtand $I = I_0$ (wto ϕ) than which statement is correct:

(1)
$$\cos \phi = \frac{R}{\left(\omega L - \frac{1}{C\omega}\right)}$$

(2)
$$\sin \phi = \left[\begin{array}{cc} \omega L - \frac{1}{C\omega} \\ \end{array}\right]$$

(3)
$$\tan \phi = \underbrace{\begin{array}{c} \omega L - \frac{1}{C\omega} \\ R \end{array}}$$

(4)
$$\tan \phi = \frac{\omega L}{R}$$

65. The potential due to electric dipole a point is :

(1) K
$$\left(\begin{array}{c} \rightarrow & \rightarrow \\ p + r \\ r^3 \end{array}\right)$$
 (2) K $\left(\begin{array}{c} \rightarrow & \rightarrow \\ p + r \\ r^3 \end{array}\right)$

(3) K
$$\left(\begin{array}{c} \rightarrow \rightarrow \\ \underline{p} - \underline{r} \\ \underline{r}^3 \end{array}\right)$$
 (4) K $\left(\begin{array}{c} \rightarrow \rightarrow \\ \underline{p} \cdot \underline{r} \\ \underline{r}^3 \end{array}\right)$

66. The magnetic field due to a current carrying wire element will be maximum when the angle between the current element and position vector is:

- (1) $\pi/2$
- (2) $\pi/4$
- $(3) \pi$
- (4) zero

67. A straight current carrying wire and loop are placed according to the figure. If the current is according to the figure:

 (1) loop will move towards the wire (2) loop will move away from the wire (3) loop will rotate around the wire (4) no change
 68. The rate of heat produced in resistance of 10 ΩΩn a.c. circuit is 250 watt per sec. the current in the resistance will be: (1) 0.5 amp. (2) 2.5 amp. (3) 5 amp. (4) 1.25 amp.
69. The mean life of a radioactive substance is equal to : (1) $\frac{1}{\sqrt{\lambda}}$ (2) $\sqrt{\lambda}$ (3) $\frac{1}{\lambda}$ (4) λ
70. The half life of a radioactive substance is 25 days. The 25 gm. sample of this substance will reduce is 150 days to :
(1) 0.375 gm. (2) 0.75 gm. (3) 1.5 gm. (4) 4 gm.
71. The wavelengths associated with photons and electron are same, the ratio of their momentum will be: (1) 1 : 1 (2) 2 : 1 (3) 1 : 3 (4) 1 : 3
 72. Work function for a surface is equal to: (1) φ = fermi energy – binding energy (2) φ = fremi energy (3) φ = binding energy – fermi energy (4) φ = binding energy
73. If the pressure of a gas is doubled at constant temperature, then the velocity of sound in the gas becomes: (1) unchanged (2) $\sqrt{2}$ times (3) half (4) double
 74. In black body radiations for maximum emission the wavelength λλ shifted with increase of temperature of black body: (1) at some temp. towards shorter side and others towards longer side (2) towards higher wavelength (3) towards shorter wavelength (4) no shift
75. If the temp. of a body is make amount of radiated energy will become : (1) 16 times (2) half (3) two times (4) four times
76. If light ray is reflected from the denser medium, the path difference produced in the reflected ray will be : $(1)\ \lambda/4 \qquad (2)\ \lambda/2 \qquad (3)\ \lambda \qquad (4)\ zero$

77.				ly from temp. 27° C to
			ess will be : (r = 1.5) (3) -928.75 J	(4) -622 5 I
	(1) 1000.23 3	(2) 12+3 3	(3) 720.73 3	(4) 022.33
78.	The absence of atmos $(1) \ V_{rms}$ is greated $(2) \ Average kine on the planet (3) \ V_{rms} less than (4) \ None$	r than escape ve tic energy gas n	elocity nolecules is negligible	et is: e to the gravitational force
79.	In a closed containe	r the mass of n	nolecule is 3 x 10 ⁻²⁷ k	g, and velocity of
	molecule is 10 m/sec	. If the no. of r	molecules in the cont	ainer is 10^{24} , the
	pressure will be:	(2) 10 27/ 2	(2) 1 27/ 2	(1) 0 7 7 7 2
	(1) 100 N/m^2	(2) 10 N/m^2	(3) 1 N/m^2	$(4) 0.5 \text{ N/m}^2$
80.	and if work done is	ΔW, the correc	ct relation between a	energy of system is du all three quantities : +dU (4) ΔW=ΔQ-dU
81.	Absorption coefficie	ent of an ideal	blackbody is :	
	(1) less then 1	(2) 1	(3) zero (4) in	finity
02	TDL - X7rms - £ ()2 - 4 25	70 C :- 37 41-	4 4h - \$7	
82.	V' than:	C is v on the	e same temp. tne vri	ns of atomic oxygen is
	$(1) V' = \frac{V}{2}$	$(2) V' = V \sqrt{2}$	(3) $V' = \frac{V}{2}$	$(4) V' = \sqrt{2 V}$
Q 3	If one gm. of water	of 1000 C conv	vartad into vanour of	1000 C the external
05.	work done in this p		-	1000 C the external
	_		(3) 2100 J	(4) 2100 cal
0.4	Of	L	-1-41:4	
04.	Of which the velocit (1) cathode ray		(3) positive ray	(4) all
	(1) camous ray	(2) 11 Tujs	(5) positive ray	(1) 411
85.	mm. the distance of	-		ces are separated by 2 0.03 cm. the wavelength
	of light will be: (1) 6000 Å	(2) 5890 Å	(3) 5000 Å	(4) 4000 Å
	(-, 0000.1	(-) 23/07.	(-)	(1)
	car is moving towar moving away from to by the observer will The max. value of m	eds one observe the observer w be (V _{air} = 320 nagnetic field in	er with velocity 4 m/s ith the same velocity m/sec.): n a electric field 3.2:	ency 240 Hz. One of the sec. and the other car is a. The no. of beat heard at 10 ⁻⁴ v/m (max. value): (4) 1.07x10 ⁻⁹ T
88.	1 amu is equal to :			

	$(1) 2 \Omega$	1) 2Ω (2) 1.0Ω			$(3) 1.5 \Omega$			$(4)~0.5~\Omega$		
90.	(2) t (3) t	n of a gr o increas o decrea o reduce None	se plate v se plate v	oltage voltage		2				
91.						riode is u	ised as a	ın ampli	fier and	$R_L = 6$
	k$\Omega$$\Omega$hen voltage ampli (1) 40 (2) 60			ication is : (3) 20		(4) 30				
92.	Ge at al		-							
	(1) supe	r cond.	(2) conductor			(3) semi conductor (4) insulator				
				A	NSWEI	R SHEE	Γ			
.(4)	2.(4)	3.(4)	4.(4)	5.(3)	6.(2)	7.(3)	8.(4)	9.(3)	10.(1)	11.(1)
2.(3)	13.(3)	14.(4)	15.(3)	16.(2)	17.(2)	18.(2)	19.(4)	20.(2)	21.(3)	22.(2)
3.(1)	24.(4)	25.(3)	26.(3)	27.(2)	28.(2)	29.(1)	30.(2)	31.(1)	32.(3)	33.(4)
4.(1)	35.(3)	36.(3)	37.(4)	38.(4)	39.(1)	40.(3)	41.(4)	42.(4)	43.(1)	44.(4)
5.(3)	46.(2)	47.(4)	48.(2)	49.(2)	50.(2)	51.(1)	52.(4)	53.(2)	54.(3)	55.(1)
6.(3)	57.(1)	58.(4)	59.(1)	60.(3)	61.(1)	62.(4)	63.(4)	64.(3)	65.(4)	66.(1)
7.(2)	68.(3)	69.(3)	70.(1)	71.(1)	72.(4)	73.(1)	74.(3)	75.(1)	76.(2)	77.(2)
8.(1)	79.(3)	80.(4)	81.(2)	82.(4)	83.(3)	84.(2)	85.(1)	86.(2)	87.(3)	88.(1)
9.(2)	90.(1)	91.(1)	92.(4)							

(1) 931 MeV (2) 931 eV (3) 9.30 eV (4) 931 KeV