RAJASTHAN P.E.T. CHEMISTRY - 1997

1. The hybridization state of \mathbf{C} atom in butendioic acid is :
(1) sp^{2}
(2) sp^{3}
(3) both two
(4) sp
2. Which of the following is not a isomer of pentane :
(1) n-pentane
(2) 2, 2-dimethy 1 propane
(3) 2, 3-dimethy 1 butane
(4) 2-methy 1 butane
3. The oxidation number of \mathbf{C} atom in $\mathbf{C h}_{2} \mathbf{C I}_{\mathbf{2}}$ and $\mathbf{C C I}_{4}$ are respectively :
(1) -2 and -4
(2) 0 and -4
(3) 0 and 4
(4) 2 and 4
4. Which of the following dissolves in lonic solvents :
(1) $\mathrm{C}_{6} \mathrm{H}_{5}$
(2) $\mathrm{CH}_{3} \mathrm{OH}$
(3) CCI_{4}
(4) $\mathrm{C}_{5} \mathrm{H}_{12}$
5. The conjugate acid of $\mathbf{H S}$ is :
(1) S^{-2}
(2) $\mathrm{H}_{2} \mathrm{~S}_{2}$
(3) both two
(4) none
6. Phenolphthalein of pH range [8-10] is used in which of the following type of titration as a suitable indicator :
(1) $\mathrm{NH}_{4} \mathrm{OH}$ and HCI
(2) $\mathrm{NH}_{4} \mathrm{OH}$ and HCOOH
(3) $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(4) NaOH and $\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2}$
7. Which of the following is iron are :
(1) Malachite
(2) Hernatite
(3) Siderite
(4) Limonite
8. The molar concentration of chloride ions in the resulting solution of $\mathbf{3 0 0}$ ml.of $\mathbf{3 . 0} \mathrm{M} \mathrm{NaCI}$ and 200 ml . of $4.0 \mathrm{M} \mathrm{BaCl}_{2}$ will be :
(1) 1.7 M
(2) 1.8 M
(3) 5.0 M
(4) 3.5 M
9. Which of the following has least bond energy :
(1) $\mathrm{N}_{2}{ }^{-2}$
(2) $\mathrm{N}_{2}{ }^{-}$
(3) $\mathrm{N}_{2}{ }^{+}$
(4) N_{2}
10. Which of the following species has highest bond energy :
(1) $\mathrm{O}_{2}{ }^{-2}$
(2) $\mathrm{O}_{2}{ }^{+}$
(3) O_{2}^{-}
(4) O_{2}
11. Which of the following compound is not aromatic :
(1) 1, 3-cyclobutene
(2) pyridine
(3) furane
(4) thiophene
12. Which of the following compound is used as refrigerant :
(1) $\mathrm{CCI}_{2} \mathrm{~F}_{2}$
(2) CCI_{4}
(3) CF_{4}
(4) Acetone
13. Which of the following is weak acid :
(1) $\mathrm{C}_{6} \mathrm{H}_{6}$
(2) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
(3) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(4) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
14. L.P.G. mainly consist of the following :
(1) Methane
(2) Hydrogen
(3) Acetylene
(4) Butane
15. The solubility product of CaCo_{3} is $5 \times \mathbf{1 0}^{-9}$. The solubility will be :
(1) 2.5×10^{-5}
(2) 7×10^{-5}
(3) 2.5×10^{-4}
(4) 2.2×10^{-9}
16. The outer electronic configuration of alkali earth metals is :
(1) nd^{10}
(2) $n s^{1}$
(3) $n p^{6}$
(4) ns_{2}
17. The nature of $2,4,6$-trinitrophenol is :
(1) Neutral
(2) Basic
(3) Acidic
(4) Weak basic
18. Which of the following group is sharp ortho and para directive :
(1) $-\mathrm{C}_{6} \mathrm{H}_{5}$
(2)- OH
(3) $-\mathrm{CH}_{3}$
(4) -CI
19. By which of the following process hydrocarbons are found from petroleum :
(1) combustion
(2) fractional distillation
(3) addition
(4) all above
20. A sample of petroleum contains $\mathbf{3 0 \%}$ n-heptane, 10% 2-methyl hexane and $\mathbf{6 0 \%} 2,2,4$-trimethyl pentane, the octane no. of this sample will be :
(1) 30%
(2) 60%
(3) 10%
(4) 70%
21. In which of the following halogens p-electrons does not take part in resonance :
(1) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$
(2) $\mathrm{BrC}_{6} \mathrm{H}_{5}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
(4) $\mathrm{CH}_{2}=\mathrm{CHCl}$
22. Which of the following statement is false :
(1) 40% solution HCHO is known as formalin
(2) HCHO is least reactive in its homologous series
(3) The B.P. of isovarelaldehyde is less than n-varelaldehyde
(4) The boiling point of ketones are higher than that of aldehydes
23. If $\mathbf{n}+\boldsymbol{v}=\mathbf{8}$ then the expected no. of orbitals will be :
(1) 4
(2) 9
(3) 16
(4) 25

(1) Lewsite
(2) Westron
(3) Acetylene tetra chloride
(4) Both 2 and 3
24. Which of the following is least hydrolysed :
(1) BeCl_{2}
(2) MgCl_{2}
(3) CaCl_{2}
(3) BaCl_{2}
25. The laughing gas is :
(1) $\mathrm{N}_{2} \mathrm{O}_{4}$
(2) NO
(3) $\mathrm{N}_{2} \mathrm{O}$
(4) $\mathrm{N}_{2} \mathrm{O}_{5}$
26. The hydrogen ion concentration of a solution is 3.98×10^{-6} mole per liter. The pH value of this solution will be :
(1) 6.0
(2) 5.8
(3) 5.4
(4) 5.9
27. The reaction of sodium acetate and sodalime gives :
(1) Butane
(2) Ethane
(3) Methane
(4) Propane
28. Which of the following acids does not contain - COOH group :
(1) Carbamic acid
(2) Barbituric acid
(3) Lactic acid
(4) succinnic acid
29. Which of the following compound of xenone does not exists :
(1) XeF_{6}
(2) XeF_{4}
(4) XeF_{5}
(4) XeF_{2}
30. $\mathrm{FeSO}_{4}, \mathbf{7 H}_{\mathbf{2}} \mathrm{O}$ is :
(1) Mohr's salt
(2) Blue vitriol
(3) Green vitriol
(4) White vitriol
31. The solution of BiCl 3 in dil. HCI when diluted with water white precipitate is formed which is :
(1) Bismith oxychloride
(2) Bismith oxide
(3) Bismith hydroxide
(3) none of these
32. The strongest acid is :
(1) acetic acid
(2) trichloroacetic acid
(3) dichloracetic acid
(4) monochloroacetic acid
33. The false statement regarding alkane is :
(1) This does not perform polymerization reaction
(2) This does not gives elimination reaction
(3) It does not disappear the colour of dilute KMnO_{4} solution
(4) It does not decolourise bromine water
34. Which of the following is strongest base :
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(2) $\mathrm{CH}_{3} \mathrm{NH}_{2}$

(3) NH_{3}
 (4) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$

36. Which of the following aromatic compound gives sulphonation reaction very easily :
(1) Chlorobenzene
(2) Nitrobenzene
(3) Toluene
(4) benzene
37. The geometry of I3- is :
(1) Triangular
(2) Linear
(3) Tetrahedral
(4) T-shape
38. The half life of a radio active element is 140 days. $1 \mathbf{~ g m}$. of this element after 560 days will become :
(1) $\frac{1}{16} \mathrm{gm}$
(2) $\frac{1 \mathrm{gm}}{4}$
(3) $\frac{1}{8} \mathrm{gm}$.
(4) $\frac{1}{2} \mathrm{gm}$.
39. The volume concentration of hydrogen peroxide 6.8% concentration will be :
(1) 5
(2) 11.2
(3) 22.4
(4) 20
40. Which of the following on combustion give maximum energy :
(1) Ethane
(2) Propane
(3) Methane
(4) Butane
(1) Gattermann
(2) Reimer-tiemann
(3) Friedel-Craft
(4) Cannizaro
41. The oxidation state of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is :
(1) +4
(2) +3
(3) +6
$(4)+5$
42. The natural rubber is the polymer of :
(1) 1, 3- butadiene
(2) polyamide
(3) isoprene
(4) none of these
43. Nylone-66 is a :
(1) polyester
(2) polyamide
(3) polyacrylate
(4) none of these
44. $2 \mathrm{NO}(\mathrm{g})+\mathrm{CI}_{2}(\mathrm{~g}) \underset{\leftarrow}{\rightarrow} \underset{\sim}{\mathbf{2}}$ NOCI The equilibrium constant for this reaction is :
(1) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NOCl}]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{CI}_{2}\right\}^{2}\right.}$
(2) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NOCl}]^{2}}{[2 \mathrm{NO}]^{2}\left[\mathrm{CI}_{2}\right]}$
(3) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NOCI}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{CI}^{2}\right]}$
(4) $\mathrm{K}_{\mathrm{c}}=\frac{[2 \mathrm{NOCl}]}{[2 \mathrm{NO}][\mathrm{Cl}]}$

A
46. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CO}+\mathrm{HCI} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCI}$ here A is :
(1) anhydrans ZnO
(3) anhydrous AICO_{3} (2) $\mathrm{V}_{2} \mathrm{O}_{5} / 450^{\circ} \mathrm{C}$
(4) solid KOH
(3) anhydrous AICO_{3} (4) solid KOH
47. The values of for HCN and $\mathrm{CH}_{3} \mathrm{COOH}$ are 7.2×10^{-10} and 1.75×10^{-5} (at $\mathbf{2 5}^{\mathbf{0}}$
C) respectively. The strongest acid amongst them is :
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) HCN
(3) both
(4) none of these
48. In which of the following carbon atom (asterisk) is asymmetric :
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHOH}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
49. Benzene reacts with $\mathrm{CH}_{3} \mathrm{COCI}$ in presence of Lewis acid AICI_{3} to form :
(1) Acetophenone
(2) Toluene
(3) Benzyl Chloride
(4) Chlorobenzene
50. Which of the following is reducing agent :
(1) $\mathrm{H}_{2} \mathrm{~S}$
(2) HNO_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
51. In which of the following alkyl chloride the possibility of SN_{1} reaction mechanism is maximum :
(1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCI}$
(2) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CI}$
(3) $\mathrm{CH}_{3} \mathrm{CI}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CI}$
52. The energy produced realated to mass decay of $\mathbf{0 . 0 2} \mathbf{a m u}$ is :
(1) 28.2 MeV
(2) 931 MeV
(3) 18.62 MeV
(4) none of these
53. The mole of hydrogen ion in 50 ml . of 0.1 M HCI solution will be :
(1) 5×10^{2}
(2) 5×10^{-3}
(3) 5×10^{3}
(4) 5×10^{-2}
54. Petroleum is mainly consist of :
(1) Aliphatic alcohol
(2) Aromatic hydrocarbon
(3) Alipnetic hydrocarbon
(4) None of these
55. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OCH}_{3}+\mathrm{HI} \xrightarrow{\Delta \Delta} \ldots \ldots . .+\ldots \ldots .$. The products in the above reaction will be :
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}+\mathrm{CH}_{3} \mathrm{OH}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HOI}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{I}$
(4) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{OI}$

56 F3 is :
(1) Bronsted base
(2) Lewis base
(3) Lewis acid
(4) Bronsted acid
57. Which of the following compound gives violet colour with FeCI_{3} solution:
(1) Benzaldehyde
(2) Aniline
(3) Nitrobenzene
(4) Phenol
58. Hypo solution forms which of the following complex compound with AgCI :
(1) $\mathrm{Na}_{5}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{3}\right]$
(2) $\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$
59. Molecular oxygen is :
(1) ferro magnetic
(2) diamagnetic
(3) para magnetic
(4) non magnetic
60. Bonds in acetylene are :
(1) 2π bonds
(2) one π bond
(3) 3π bonds
(4) none of these
61. The false statement for Griynaed reagent is :
(1) It gives tertiary alcohol with acetamide
(2) It gives tertiary alcohol with acetone
(3) It gives secondary alcohol with acetaldehyde
(4) It gives primary alcohol with formaldehyde
62. Which of the following alkane exists is liquid state at normal temperature :
(1) $\mathrm{C}_{20} \mathrm{H}_{42}$
(2) $\mathrm{C}_{3} \mathrm{H}_{8}$
(3) $\mathrm{C}_{8} \mathrm{H}_{18}$
(4) CH_{4}
63. The solubility of AgCI at $25^{\circ} \mathrm{C}$ will be maximum in :
(1) Potassium chloride solution
(2) AgNO_{3} solution
(3) Water
(4) All above
64. The weight of a benzene molecule is :
(1) 78 gm .
(2) 7.8 gm .
(3) 13×10^{-23}
(4) none of these
65. CuFeS_{2} is :
(1) iorn pyrites
(2) malachite
(3) chalcosite
(4) chalcopyrites
66. Primary halides follow the following reaction mechanism :
(1) SN_{1}
(2) SN_{2}
(3) both
(4) none of these
67. C and Si belong to the same group of periodic table, CO_{2} is a gas and SiO_{2} is a :
(1) liquid
(2) gas
(3) solid
(4) none of these
68. $\mathrm{H}_{2} \mathrm{~S}$ is a gas while $\mathrm{H}_{2} \mathrm{O}$ is a liquid because :
(1) there is association due to hydrogen bonding
(2) bond energy of OH high
(3) the ionization potential of oxygen is high
(4) the electro negativity of oxygen is high
69. "The negative part of the molecule adding to the double bond goes to that unsaturated asymmetric carbon atom which is linked to the least number of hydrogen atoms." This statement is related to :
(1) Markownikoff's law
(2) Peroxide effect
(3) Bayer's law of distortion

(4) none of these

70. The conjugate base of NH 3 is :
(1) $\mathrm{N}_{2} \mathrm{H}_{4}$
(2) $\mathrm{NH}_{2}{ }^{-}$
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) $\mathrm{NH}_{2}{ }^{+}$
71. (a) N_{2} and (b) $\mathrm{C}_{2} \mathrm{H}_{2}$. The nos. of π тand σ oond in the molecules are respectively :
(1) (a) 2,2 (b) 2,2
(2) (a) 1,2 (b) 2,1
(3) (a) 2,1 (b) 2,3
(4) (a) 2,1 (b) 2,1
72. In which of the following compound there are maximum no. of $\mathbf{s p}^{\mathbf{2}}$ hybrid \mathbf{C} atoms:
(1) Benzene
(2) 1,3,5-hexatriene
(2) 1,2,4-hexatriene
(4) both 1 and 2
73. The shape of the molecule having hybrid orbitals of 20% character will be :
(1) octahedral
(2) tetrahedral
(3) square planer
(4) triangular bipyramidal
74. The $\mathbf{p H}$ of a solution is 5 . If the dilution of this solution is increased by 100 times, the pH value will be :
(1) 5
(2) 7
(3) 9
(4) 8
75. The required amount of oxygen for combustion of $\mathbf{2 0} \mathbf{~ m l}$. of gaseous hydrocarbon is $\mathbf{5 0} \mathbf{~ m l}$. The hydrocarbon will be :
(1) $\mathrm{C}_{2} \mathrm{H}_{2}$
(2) $\mathrm{C}_{2} \mathrm{H}_{4}$
(3) $\mathrm{C}_{2} \mathrm{H}_{6}$
(4) $\mathrm{C}_{3} \mathrm{H}_{4}$
76. The formula of Celestine is :
(1) SrSO_{4}
(2) SrCO_{3}
(3) SrO
(4) SrCl_{2}
77. $\mathbf{C u C l}_{\mathbf{2}}+\rightarrow \mathbf{G u}+\mathbf{C l}_{\mathbf{2}}$. The required amount of electricity for this reaction is :
(1) 4 faraday
(2) 2 faraday
(3) 1 faraday
(4) 3 faraday
78. Nitrogen does not forms NF_{5} because :
(1) The bondenergy of $\mathrm{N} \equiv \mathrm{N}$ is very high
(2) Vaccent d-orbitals are not present
(3) N belongs to V group
(4) There is inert effect
79. The normal temperature when raised by $10^{\circ} \mathrm{C}$, the rate of reaction will be :
(1) lowered by 2 times
(2) increased by 2 times
(3) lowered by 10 times
(4) increased by 10 times
80. Which of the following gives red precipitate with ammonical cuprous chloride :
(1) Propane
(2) Ethane
(3) Methane
(4) Acetylene
81. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{\mathbf{2 +}}$ snows the following hybridization :
(1) dsp^{2}
(2) $\mathrm{sp}^{3} \mathrm{~d}$
(3) dsp^{3}
(4) sp^{3}
82. A solution contains CI-, I^{-}and $\mathrm{S}_{4}{ }^{3-}$ ions in it. Which of the following ion is capable to precipitate all of above when added in this solution :
(1) Pb^{2+}
(2) Ba^{2+}
(3) Hg^{2+}
(4) Cu^{2+}
83. Fool's gold is :
(1) $\mathrm{Cu}_{2} \mathrm{~S}$
(2) FeS_{2}
(3) $\mathrm{Al}_{2} \mathrm{O}_{5}$
(4) CuFeS_{2}
84. In which of the following compound the central atom is in $\mathbf{s p}^{\mathbf{2}}$ hybrid state :
(1) OF_{2}
(2) HgCl_{2}
(3) XeF_{2}
(4) $\mathrm{NH}_{2}{ }^{+}$
85. The number of alkenyl groups possible from $\mathrm{C}_{4} \mathrm{H}_{7}{ }^{-}$are :
(1) 7
(2) 5
(3) 3
(4) 8
86. The tetraethyl lead mixed in petrol is works as :
(1) Cooling agent
(2) Anti knocking agent
(3) Bleaching agent
(4) None of these
87. The alkaline hydrolysis of ester is known as :
(1) dehydrogenation
(2) dehydration
(3) esterification
(4) saponification
88. The degree of ionization of 0.4 M acetic acid will be : $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
(1) 6.71×10^{-3}
(2) 1.6×10^{-3}
(3) $0.4 \times 1.8 \times 10^{-5}$
(4) 1.8×10^{-5}
89. Haber process is used for production of which of the following :
(1) NH_{3}
(2) HNO_{3}
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(4) O_{3}
90. The $p_{k a}$ value of phenolphthalein is 9.1 and the pH range is 8 -10. In which of the following titrations it can be used as an indicator :
(1) $\mathrm{NH}_{4} \mathrm{OH}$ and HCI
(2) $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
(3) NaOH and HCI
(4) $\mathrm{NH}_{4} \mathrm{OH}$
91. Number of electrons in a one molecule of CO_{2} :
(1) pb^{2+}
(2) Hg^{2+}
(3) Ba^{2+}
(4) Cu^{2+}
92. Which of the following species shows the maximum magnetic moment :
(1) Mn^{+6}
(2) Ni^{2+}
(3) Fe^{3+}
(4) Ag^{+}
93. $\mathrm{K}_{\text {sp }}$ value of CaF_{2} is $\mathbf{3 . 7 5} \times 10^{11}$ The solubility will be :
(1) $1.45 \times 10^{-11} \mathrm{~mol} / \mathrm{litre}^{-1}$
(2) $3.45 \times 10^{-4} \mathrm{~mol} / \mathrm{liter}^{-1}$
(3) $2.05 \times 10^{-4} \mathrm{~mol} / \mathrm{liter}^{-1}$
(4) $3.75 \times 10^{-11} \mathrm{~mol} / \mathrm{liter}^{-1}$
94. When $\mathrm{Pb}_{3} \mathrm{O}_{4}$ is heated with dilute $\mathrm{H} \mathrm{N} \mathrm{O}_{3}$ it gives :
(1) pbO_{2} and $\mathrm{pb}\left(\mathrm{NO}_{3}\right)_{2}$
(2) pbO and $\mathrm{pb}\left(\mathrm{NO}_{3}\right)_{2}$
(3) pbO_{2}
(4) pbO
95. C-H bond length is least in :
(1) Acetylene
(2) Methane
(3) Ethylene
(4) Ethane
96. The minimum nos. of carbon atoms in ketones which will show chain isomerism will be :
(1) Seven
(2) four
(3) six
(4) five
97. Which of the following organic compound could not be dried by anhydrous CaCI_{2} :
(1) ethanol
(2) benzene
(3) chloroform
(4) ethyl acetate
98. Which of the following compound forms white precipitate with bromine water :
(1) Nitrobenzene
(2) Phenol
(3) Benzene
(4) all above
99. Gypsum is :
(1) $\mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(3) $2 \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(4) CaSO_{4}
100. Which of the following carbonium ion is most stable :
(1) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2}$
CH_{3}
(3) $\mathrm{CH}_{3} 0 \mathrm{CH}-\mathrm{CH}_{3}$
(4) CH_{3}

ANSWER SHEET

$1 .(2)$	$2 .(3)$	$3 .(3)$	$4 .(2)$	$5 .(2)$	$6 .(4)$	$7 .(1)$	$8 .(3)$	$9 .(1)$	$10 .(4)$	$11 .(1)$
$12 .(1)$	$13 .(2)$	$14 .(4)$	$15 .(2)$	$16 .(4)$	$17 .(3)$	$18 .(2)$	$19 .(2)$	$20 .(2)$	$21 .(1)$	$22 .(2)$
$23 .(3)$	$24 .(4)$	$25 .(4)$	$26 .(3)$	$27 .(3)$	$28 .(3)$	$29 .(2)$	$30 .(3)$	$31 .(3)$	$32 .(1)$	$33 .(2)$
$34 .(3)$	$35 .(2)$	$36 .(3)$	$37 .(2)$	$38 .(1)$	$39 .(4)$	$40 .(4)$	$41 .(3)$	$42(3)$	$43 .(3)$	$44 .(2)$
$45 .(3)$	$46 .(3)$	$47 .(1)$	$48 .(1)$	$49 .(1)$	$50 .(1)$	$51 .(2)$	$52 .(1)$	$53 .(2)$	$54 .(3)$	$55 .(3)$
$56 .(3)$	$57 .(4)$	$58 .(3)$	$59 .(3)$	$60 .(1)$	$61 .(1)$	$62 .(3)$	$63 .(3)$	$64 .(3)$	$65 .(4)$	$66 .(1)$
$67 .(3)$	$68 .(1)$	$69 .(1)$	$70 .(2)$	$71 .(3)$	$72 .(4)$	$73 .(4)$	$74 .(2)$	$75 .(1)$	$76 .(2)$	$77 .(2)$
$78 .(2)$	$79 .(2)$	$80 .(4)$	$81 .(1)$	$82 .(1)$	$83 .(2)$	$84 .(4)$	$85 .(4)$	$86 .(2)$	$87 .(4)$	$88 .(1)$
$89 .(1)$	$90 .(3)$	$91 .(1)$	$92 .(3)$	$93 .(3)$	$94 .(1)$	$95 .(1)$	$96 .(4)$	$97 .(1)$	$98 .(2)$	$99 .(2)$
$100 .(1)$										

1. The equation of the normal to the circle $x 2+y 2=a 2$ at point $\left(x^{\prime} y^{\prime}\right)$ will be :
(1) $x^{\prime} y-x y^{\prime}=0$
(2) $x x^{\prime}-y y^{\prime}=0$
(3) $x^{\prime} y+x y^{\prime}=0$
(4) $x x^{\prime}+y y^{\prime}=0$
2. Equation of the bisector of the acute angle between lines $3 x+4 y+5=0$ and $12 x-5 y-7=0$ is :
(1) $21 x+77 y+100=0$
(2) $99 x-27 y+30=0$
(3) $99 x+27 y+30=0$
(4) $21 x-77 y-100=0$
3. Equation to the line passing through the point $(-4,5)$ and perpendicular to $3 x$ $=4 y=7$:
(1) $3 x-4 y+32=0$
(2) $4 x+3 y+1=0$
(3) $3 x+4 y-8=0$
(4) $4 x-3 y+31=0$
4. If $\theta \theta$ s the angle between two straight lines represented by $\mathbf{a x}{ }^{2}+2 h x y+b y^{2}=$ 0 then :
(1) $\tan \theta=\frac{2 \sqrt{\mathrm{~h}^{2}+\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}$
(2) $\cos \theta=\underline{2 \sqrt{h^{2}-a b}}$
(3) $\tan \theta=\frac{\sqrt{h^{2}-a b}}{a+b}$
(4) $\tan \theta=\frac{a+b}{a+b}$
5.The real part of $\cosh (\alpha c t i \beta \beta$:
(1) $\sin \alpha \sin h \beta$
(2) $\cos \alpha \cos \mathrm{h} \beta$
(3) $2 \cos n \theta$
(4) $\cos h \alpha \cos \beta$
5. If $z=\cos \theta \theta \sin \theta \theta$ then the value of $z^{n}+\frac{1}{z^{n}}$ will be :
(1) $\sin 2 n \theta$
(2) $2 \sin n \theta$
(3) $2 \cos n \theta$
(4) $\cos 2 n \theta$
6. If α oand β are the roots of the equation $x^{2}-2 x+4=0$ then the value of $\alpha \alpha+\beta \beta$ will be :
(1) $i 2^{n+1} \sin (n \pi / 3)$
(2) $2^{n+1} \cos (n \pi / 3)$
(3) $\mathrm{i} 2^{\mathrm{n}-1} \sin (\mathrm{n} \pi / 3)$
(4) $2^{n-1} \cos (n \pi / 3)$
7. $\left[\sin \left(\alpha \alpha \theta \theta-e^{\text {ai }} \sin \theta \theta^{n}\right.\right.$ is equal to :
(1) $\cos ^{n} \alpha e^{i n \theta}$
(2) $\sin ^{n} \alpha e^{\operatorname{in} \theta}$
(3) $\cos ^{n} \alpha e e^{i n} \theta$
(4) $\sin ^{n} \alpha e^{-i n \theta}$
second order then CAC is equal to :
(1) [0]
(2) [1]
(3) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(4) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
8. If $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$ and $I=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ then the correct statement is :
then the correct statement is :
(1) $\mathrm{A}^{2}+5 \mathrm{~A}-7 \mathrm{I}=0$
(2) $-A^{2}+5 A+7 I=0$
(3) $A^{2}-5 A+7 I=0$
(4) $A^{2}+5 A+7 I=0$
9. If A and B are the two matrices of the same order and $A^{2}-b^{2}=(A+B)(A-B)$, then the correct statement will be :
(1) $A^{\prime} \mathrm{B}^{\prime}=\mathrm{AB}$
(2) $\mathrm{AB}=\mathrm{BA}$
(3) $A^{2}+B^{2}=A^{2}-B^{2}$
(4) none of these
10. The value of the determinant
$\left.\begin{array}{ccc}\text { a-b-c } & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 \mathrm{c} & \text { c-a-b }\end{array} \right\rvert\,$ will be :
(1) $(a-b-c)\left(a^{2}+b^{2}+c^{2}\right)$
(2) $(a+b+c)^{3}$
(3) $(a+b+c)(a b+b c+c a)$
(4) none of these
11. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then $C_{0}-C_{1}+C_{2}-C_{3}+\ldots+(-1)^{n} C_{n}$ is equal to:
(1) 3^{n}
(2) 2^{n}
(3) 1
(4) 0
12. The term independent of x in the expansion $\binom{x}{x}^{2 n}$ is :
(1) $\frac{1.3 .5 \ldots \ldots \cdot(2 n-1)}{n!} \cdot 2^{n-1}$
(2) $1.3 .5 \ldots \ldots(2 n-1) \cdot 2^{n}$
(3) a.3.5.....(2n-1) . 2^{n}
(4) none of these
13. $(1-x)^{3}$ is equal to :
(1) $x^{3}+3 x^{2}+3 x-1$
(2) $x^{3}-3 x^{2}+3 x-1$
(3) $x^{3}-3 x^{2}-3 x+1$
(4) $x^{3}+3 x^{2}+3 x+1$
14. If $n \in \mathbb{N}$, then ${ }_{\mathrm{m}=1}^{\mathrm{m}} \mathbf{2}$ is equal to :
(1) $\frac{m(m+1)(2 m+1)}{6}$
(3) $\frac{\mathrm{m}((\mathrm{m}-1)(2 \mathrm{~m}-1)}{6}$
(4) $\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
15. If A.M. and H.M. between two numbers are 27 and 12 respectively then their G.M. is:
(1) 9
(2) 18
(3) 24
(4) 36
16. If

$$
\frac{1}{q+r},
$$

\qquad , are in A.P. then :
(1) $\mathrm{p} 2, \mathrm{q} 2, \mathrm{r} 2$ are in A.P.
(2) p, q, r are in A.P.
(3) p,q,r are in G.P.
(4) $\frac{1}{\mathrm{p}}, \frac{1}{\mathrm{q}}, \frac{1}{\mathrm{r}}$ are in A.P.
19. If α oand β fare the roots of the equation $x^{2}-a x+b=0$ and $v_{n}=\alpha \alpha+\beta \beta$ then :
(1) $v_{n+1}=a v_{n}+b v^{n-1}$
(2) $v_{n+1}=b v_{n}-a v_{n-1}$
(3) $v^{n+1}=a v_{n}-b v_{n-1}$
(4) $v^{n+1}=b v_{n}+a v_{n-1}$
20. If α cand $\underline{1}$ are the roots of the equation $5 x^{2}+13 x+k=0$ then k will be: $\alpha \alpha$
(1) 5
(2) -5
(3) 13
(4) 1
21. The value $i^{3}-i^{5}-i^{10}-i^{16}$ will be :
(1) 0
(2) i
(3) $-2-2 \mathrm{i}$
(4) $2-2 \mathrm{i}$
22. A coin tossed $m+n(m>n)$, times then the probability that the head appears m times continuosly is :
(1) $\frac{m+n}{2^{m+n}}$
(2) $\frac{n+2}{2^{m+1}}$
(3) $\frac{m}{2^{m+n}}$
(4) $\frac{m+2}{2^{n+1}}$
23. For any two events A and B if $P(A \cup B)=5 / 6, P(A \cap B)=1 / 3, P(B)=1 / 2$ then $\mathbf{P}(\mathrm{A})$ is :
(1) $1 / 2$
(2) $2 / 3$
(3) $1 / 3$
(4) none of these
24. If M and N are any two events, then the probability of happening exactly one event is:
(1) $\mathrm{P}(\mathrm{M})+\mathrm{P}(\mathrm{N})-\mathrm{P}(\mathrm{MN})$
(2) $\mathrm{P}(\mathrm{M})+\mathrm{P}(\mathrm{N})-2 \mathrm{P}(\mathrm{MN})$
(3) $\mathrm{P}(\mathrm{M})+\mathrm{P}(\mathrm{N})+2 \mathrm{P}(\mathrm{MN})$
25. A bag contains 3 white and 5 black balls. One ball is drawn at random. Then the probability that it is black is :
(1) $\frac{1}{8}$
(2) $\frac{3}{8}$
(3) $\frac{5}{8}$
(4) $\frac{3}{5}$
26. A box contains 100 bulbs, out of these 10 are used. 5 bulbs are choosen at random. Then the probability that no one is fused is :
(1) $\left(\frac{9}{10}\right)^{5}$
(2) $\frac{{ }^{90} \mathrm{C}_{5}}{{ }^{100} \mathrm{C}_{5}}$
(3) $\left(\frac{1}{2}\right)^{5}$
(4) 10^{-5}
27. For any two events A and B the correct statement is :
(1) $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(2) $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-1$
(3) $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-1$
(4) $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

$$
\rightarrow \rightarrow
$$

28. For any non zero vector a the correct statement is :
$\rightarrow \rightarrow$
$\rightarrow \rightarrow$
$\rightarrow \rightarrow$
$\rightarrow \rightarrow$
(1) a. a ≤ 0
(2) $a \cdot a=0$
(3) $a \cdot a>0$
(4) $\mathrm{a} . \mathrm{a} \geq 0$
$\rightarrow \rightarrow \rightarrow \rightarrow$
29. a. $(\mathrm{bxc})=0$ then the correct statement is :

$$
\rightarrow \rightarrow \rightarrow
$$

(1) out of a, b , c any two vectors are parallel
$\rightarrow \rightarrow \rightarrow$
(2) a, b, c are coplanar
(3) any two are equal $\begin{aligned} & \rightarrow \rightarrow \vec{b}, \vec{c}\end{aligned}$
(4) at least one above statement is correct
$\rightarrow \rightarrow \rightarrow \rightarrow \quad \rightarrow \rightarrow$
30. If $A \times B=0$ where A and B are non zero vectors then :
$\rightarrow \quad \rightarrow$
(1) A and B are perpendicular to each other
(2) the angle between \vec{A} and \vec{B} is π
$\rightarrow \quad \rightarrow$
(3) A and B parallel vectors
\rightarrow
(4) B is unit vector

```
^^ ^^ ^^ ^^ ^^ ^^
```

to:
(1) -3
(2) -2
(3) -1
(4) 0
32. If $\left.\frac{d}{d x} \quad \phi \phi x\right)=f(x)$ then ${ }_{1}^{2} f(x) d x$ is equal to :
(1) $f(1)-f(2)$
(2) $\phi(1)-\phi(2)$
(3) $f(2)-f(1)$
(4) $\phi(2)-\phi(1)$
33. If $f(a-x)=f(x)$, then ${ }_{0} x f(x) d x$ is equal to :
(1) ${ }_{0}^{a} f(x) d x$
(2) $a{ }_{0}^{a / 2} f(x) d x$
(3) $a_{0}^{a} f(x) d x$
(4) none of these
34. ${ }_{-a}^{a} f(x) d x=2{ }_{0}^{a} f(x) d x$ when :
(1) $f(2 a-x)=-f x$
(2) $f(2 a-x)=f(x)$
(3) $f(-x)=-f(x)$
(4) $f(-x)=f(x)$
35. ${ }_{0}^{2}|1-x| d x$ is equal to :
(1) 0
(2) 1
(3) $\frac{3}{2}$
(4) $\frac{1}{2}$
36. For any integer n the value of $\int_{0}^{\pi \pi} e^{\cos 2} \cos ^{3}(2 n+1) x d x$ will be:
(1) e^{2}
(2) 0
(3) 1
(4) e
37.
 dx is equal to :
(1) $2 \tan ^{-1}\left(\tan ^{2} x\right)+C$
(2) $\tan ^{-1}\left(x \tan ^{2} x\right)+C$
(3) $\tan ^{-1}\left(\tan ^{2} x\right)+C$
(4) none of these
38. $\frac{1}{x^{5}} d x$ is equal to :
(1) $-\frac{1}{5 x^{4}}+C$
(2) $-\frac{1}{5 \mathrm{x}^{6}}+\mathrm{C}$
(3) $-\frac{1}{4 \mathrm{x}^{4}}+\mathrm{C}$
(4) $\frac{-5}{x^{6}}+C$
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
40. If the normal to a curve is parallel to axis of x, then the correct statement is :
(1) $\frac{d x}{d y}=-1$
(2) $\frac{d x}{d y}$
(3) $\frac{d x}{d y}=0$
(4) $\frac{d y}{d x}=0$
41. $\frac{d}{d x} \sin ^{-1} x$ is equal to :
(1) $-\frac{1}{\sqrt{\mathrm{x}^{2}-1}}$
(2) $\frac{1}{\sqrt{\mathrm{x}^{2}-1}}$
(3) $\frac{1}{\sqrt{1-x^{2}}}$
(4) $-\frac{1}{\sqrt{1-x^{2}}}$
42. The differential coefficient of $\mathrm{e}^{\mathrm{x}-3}$ is :
(1) $2 x^{3} e^{x 3}$
(2) $3 x\left(e^{\times 3}\right)$
(3) $e^{x 3}$
(4) $3 x^{2} e^{x 3}$
43. $\frac{d}{d x}\left(x^{x}\right)$ is equal to :
(1) $x^{x} \log (e / x)$
(2) $x^{x} \log e x$
(3) $\log \mathrm{ex}$
(4) $x^{x} \log x$
44. $\lim _{x \rightarrow a}[f(x), g(x)]$ will exist, when :
(1) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is exists
(2) $\lim _{x \rightarrow a}[f(x)]^{g(x)}$ is exists
(3) $\lim _{x \rightarrow a} f(x)$ or $\lim g(x)$ is exists
(4) $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exists
45. $\lim _{x \rightarrow \theta \rightarrow+} \frac{\sin x}{x}$ is equal to :
(1) 2
(2) -1
(3) 1
(4) 0
46. If $f(x)=\sin [x],[x] \neq \boldsymbol{\theta}$ where $[x]$ is a greatest integer less or equal to x then $\lim f(x)$ is equal to : $\mathrm{x} \rightarrow \mathrm{a} \rightarrow$
(1) -1
(2) 0
(3) 1
(4) does not exist
be:
(1) $\{1, \pm 2, \pm 5\}$
(2) $\{1,2,5\}$
(3) $\{-2,-1,0,1,2\}$
(4) none of these
48. The point (at3, at 2) will lies on the curve :
(1) $x^{3}=a y^{2}$
(2) $x^{2}=a y$
(3) $y^{2}=a c$
(4) $y^{3}=a x^{2}$
49. The diameter of the circle $x^{2}+y^{2}+4 x-6 y=0$, is :
(1) $\sqrt{52}$
(2) $\sqrt{13}$
(3) $\sqrt{26}$
(4) $\sqrt{20}$
50. The pole of the line $\tau x+m y+n=0$ w.r.t. the circle $x^{2}+y^{2}=a^{2}$ is :
(1) $\left(-\frac{\mathrm{n}}{1} \mathrm{a}^{2},-\frac{\mathrm{n}}{\mathrm{m}} \mathrm{a}^{2}\right)$
(2) $\left[\begin{array}{ll}-\frac{\mathrm{a}}{\mathrm{na}^{2}}, & \frac{\mathrm{~m}}{m a^{2}}\end{array}\right]$
(3) $\left(-\frac{1}{n} a^{2}, \frac{m}{n} a^{2}\right)$
(4) $\left\{\frac{1}{n} a^{2},-\frac{m}{n} a^{2}\right)$
51. Two dice thrown together then the probability of getting a sum of 7, is :
(1) $\frac{7}{36}$
(2) $\frac{6}{36}$
(3) $\frac{5}{36}$
(4) $\frac{8}{36}$
52. For any two events A and $B, P(A \cap B)$ is equal :
(1) $P(A)-P(A \cap B)$
(2) $P(A)-P(A \cap B)$
(3) $\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
(4) $\mathrm{P}(\mathrm{A})+(\mathrm{A} \cap \mathrm{B})$
53. If A and B are two events, then $P(A / B)$ is equal to :
(1) $\mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$
(2) $\underline{1-\mathrm{P}(\mathrm{A}+\mathrm{B})}$
$\mathrm{P}(\mathrm{B})$
(3) $1-\mathrm{P}(\mathrm{AB})$
(4) $1-\mathrm{P}(\mathrm{A} / \mathrm{B})$
54. If $A \leq B$, then $B \cup(A$ will be :
(1) [0]
(2) ϕ
(3) A
(4) B
55. $P\left(\frac{A}{A \cup B}\right)$ is equal :
(1) $\xrightarrow{\mathrm{P}(\mathrm{A})}$ $P(A \cup B)$
(2) $\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}$
(3) $\mathrm{P}(\mathrm{A})$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
(4) $P(B)$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
56. The period of $\sin ^{4} x+\cos ^{4} x$ will be :
(1) $\frac{3 \pi}{2}$
(2) 2π
(3) π
(4) $\frac{\pi}{2}$
$\rightarrow \rightarrow \rightarrow \rightarrow$
57. $\mathrm{ax}(\mathrm{bxc})$ is equal to :

58. The angle between the vectors $(i+j) a b d(j+k)$ is
(1) $\frac{\pi}{4}$
(2) 0
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{3}$
59. The area of the region bounded by the curves $y=x \sin x$, axis of $x, x=0$ and $\mathbf{x}=\mathbf{2} \pi \pi$ will be :
(1) 8π
(2) 4π
(3) 2π
(4) π
$\pi / 2$
60. $\log \sin x d x$ is equal to :
(1) $\pi \log \left(\frac{1}{2}\right)$
(2) $\pi \log 2$
(3) $\pi \log \left(\frac{1}{2}\right)$
(4) $\frac{\pi}{2} \log 2$
b
61. $f(x) d x$ is equal to
b
a
b
(1) $f(x-a-b) d x$
(2) $f(a-x) d x$
(3) $f(a+b-x) d x$ (4) noneof these
62. $\cos ^{\sin } 2 \mathrm{x} \log \tan \mathrm{xdx}$ is equal to :
(1) 2π
(2) π
(3) 0
(4) $\pi / 2$
$\pi \pi$
63. $\cos ^{3} x d x$ is equal to :
(1) 4π
(2) 2π
(3) π
(4) 0
$\pi \hbar 2$
64. $\frac{1}{1+\sqrt{\tan x}} d x$ is equal to :
65. cot $x d x$ is equal to :
(1) $\log \tan x+C$
(2) $\log \sec x+C$
(3) $\log \operatorname{cosec} x+C$
(4) $\log \sin x+C$
66. If $z=x+y$ iy then $|z-5|$ is equal to :
(1) $\sqrt{(x-y)^{2}+5^{2}}$
(2) $\sqrt{(x-5)^{5}+y^{2}}$
(3) $\sqrt{x^{2}+(y-5)^{2}}$
(4) $\sqrt{(x-5)^{2}+(y-5)^{2}}$
67. If α and β are the roots of the equation $4 x^{2}+3 x+7=0$ then $\underline{1}+\underline{1}$ is equal is :
$\alpha \alpha \beta \beta$
(1) $\frac{7}{3}$
(2) $\frac{2}{7}$
(3) $\frac{-3}{7}$
(4) $\frac{3}{7}$
68. 2,357 is equal to :
(1) $\frac{2379}{999}$
(2) $\frac{2355}{999}$
(3) $\frac{2355}{997}$
(4) none of these
69. If the second term of a G.P. is 2 and the sum of its infinite terms is 8 , then its first therm is :
(1) 2
(2) 4
(3) 6
(4) 8
70. $(1+2+3+\ldots+n)$ is equal to :
(1) $\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
(2) n^{2}
(3) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(4) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
71. For $n \in \mathbb{N}, \mathbf{2}^{\mathbf{3 n}}-\mathbf{7 n}-\mathbf{1}$ is divisible by :
(1) 50
(2) 49
(3) 51
(4) 48
72. If $x=2+2^{1 / 3}+2^{2 / 3}$, then $x^{3}-6 x^{2}+6 x$ is equal to :
73. If $(1-x)^{n}=C_{0}+C_{1} x+\ldots+C_{n} x^{n}$ then $C_{1}+2 C_{2}+3 C_{3}+\ldots .+n C_{n}$ is equal is :
(1) $n \cdot 2^{n-1}$
(2) $(\mathrm{n}-1)^{2 \mathrm{n}-1}$
(3) $(\mathrm{n}+1)^{2 \mathrm{n}}$
(4) $2^{n-1}-1$
74. Determinate $\left|\begin{array}{cc}1+i b & c+i d \\ c-i d & \mathbf{a}-i b\end{array}\right|$ is equal to :
(1) $a^{2}-b^{2}+c^{2}+d^{2}$
(2) $a^{2}+b^{2}-c^{2}-d^{2}$
(3) $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$
(4) $(a+b)(a-b)$
75. $\left|\begin{array}{lll}43 & 1 & 6 \\ 35 & 7 & 4 \\ 17 & 3 & 2\end{array}\right|$ is equal to:
(1) -6
(2) -110
(3) 0
(4) 150
76. If $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ then $A 2$ is equal to:
(1) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(2) $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
(3) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(4) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
77. If $\mathrm{A}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ then A^{n} is equal to :
(1) $\left(\begin{array}{cc}1 & n^{n} \\ 0 & 1\end{array}\right)$
(2) $\left(\begin{array}{ll}n & n \\ 0 & n\end{array}\right)$
(3) $\left(\begin{array}{rr}1 & \mathrm{n} \\ 0 & 1\end{array}\right)$
(4) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
78. If A and B are the invertible matrix of the required order then the value of $(A B)^{-1}$ will be :
(1) $\left[(\mathrm{AB})^{\prime}\right]^{-1}$
(2) $A^{-1} B^{-1}$
(3) $\mathrm{B}^{-1} \mathrm{~A}^{-1}$
(4) $(\mathrm{BA})^{-1}$
79. The value of $\sin 3 x$ is :
(1) $4 \sin x-3 \sin ^{3} x$
(2) $4 \sin x+3 \sin ^{3} x$
(3) $3 \sin x-4 \sin ^{3} x$
(4) $3 \sin x+4 \sin ^{3} x$
80. The imaginary roots of $(-1)^{1 / 3}$ is :
(1) $\frac{1 \pm \sqrt{3 \mathrm{i}}}{4}$
(2) $\pm i$
(3) $\frac{-1 \pm \sqrt{3}}{2}$
(4) $\frac{1 \pm \sqrt{3 \mathrm{i}}}{2}$
81. The argument and modulus of the $e^{\sin i \theta \theta}$ is :
(1) $1, \sin \mathrm{~h} \theta$
(2) $1, \pi / 2$
(3) $e^{\cos } \theta, \sin \mathrm{h} \theta$
(4) $e^{\sin } \theta, \sin h \theta$
82. The minimum distance of a point (x, y) from a line $a x+b y+c=0$, is :
(3) $\frac{|a x 1+b y 1+c|}{\sqrt{a^{2}+b^{2}+c^{2}}}$
(4) $\frac{|a \mathrm{ax} 1+\mathrm{by} 1+\mathrm{c}|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}}}$
83. A straight line through $(1,1)$ and parallel to the line $2 x+3 y-7=0$ is :
(1) $2 x+3 y+5=0$
(2) $3 x-2 y+7=0$
(3) $3 x+2 y-8=0$
(4) $2 x+3 y-5=0$
84. Equation of the straight line passing through the points $(-1,3)$ and (4, -2) is :
(1) $x-y=3$
(2) $x+y=3$
(3) $x-y=2$
(4) $x+y=2$
85. The general equation of circle passing through the point of intersection of circle $S=0$ and line $P=0$, is :
(1) $S+\lambda P=0, \lambda \in R$
(2) $6 \mathrm{~S}+4 \mathrm{P}=0$
(3) $3 \mathrm{~S}+4 \mathrm{P}=0$
(4) $4 \mathrm{~S}+5 \mathrm{P}=0$
86. The equation of the radial axis of two circle $x^{2}+y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0$ and $x^{2}+y^{2}+2 g_{2} x+2 f_{2} y+c_{2}=0$, is :
(1) $2\left(g_{1}-g_{2}\right) x+2\left(f_{1}-f_{2}\right) y-c_{1}-c_{2}=0$
(2) $2\left(\mathrm{~g}_{2}-\mathrm{g}_{1}\right) \mathrm{x}+2\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) \mathrm{y}+\mathrm{c}_{1}-\mathrm{c}_{2}=0$
(3) $2\left(\mathrm{~g}_{1}-\mathrm{g}_{2}\right) \mathrm{x}+2\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) \mathrm{y}+\mathrm{c}_{1}-\mathrm{c}_{2}=0$
(4) $2\left(g_{1}-g_{2}\right) x+2\left(f_{1}-f_{2}\right) y+c_{2}-c_{1}=0$
87. If $f(x)=\cos (\log x)$, then $f(x) f(y)-1[f(\underline{x})-f(x y)]$ is equal to :
(1) 0
(2) $f(x+y)$
(3) $f(\underline{x})$
(4) $f(x y)$ y
88. If $f(x)=\frac{x}{x-1}=y$, then the value of $f(y)$ is :
(1) $1-x$
(2) $x+1$
(3) $x-1$
(4) x
89. $\lim _{n \rightarrow \infty}\left(\frac{1^{2}}{13+n 3}+\frac{2^{2}}{23+n 3}+\frac{1}{2 n}\right)$ is equal to :
(1) $\frac{1}{2} \log 2$
(2) $3 \log 2$
(3) $\frac{1}{3} \log 2$
(4) $\frac{1}{2} \log 3$
90. $\lim _{x \rightarrow \infty} \frac{x^{2}-a 2}{x-a}$ is equal to :
(1) ∞
(2) 0
(3) a
(4) 2 a
91. $\frac{d}{d x}\left(2^{x}\right)$ is equal to :
(1) 1
(2) $2^{x} \log 2$
(3) $x \log 2$
(4) 0
92. Differential coefficient of x^{3} w.r.t. x^{2} will be :
(1) $\frac{3}{2 x}$
(2) $\frac{2}{3 x}$
(3) $\frac{3}{2} x$
(4) $\frac{3 x^{2}}{2}$
93. $\frac{d}{d x}(\tan x)$ is equal to :
(1) $\operatorname{cosec}^{2} x$
(2) $\sec x \tan x$
(3) $\operatorname{cosec} x \cot x$
(4) $\sec ^{2} x$
94. The coordinates of the point where the tangent to the curve $x 2+y 2-2 x-$ $3=0$ is parallel to the axis of x is :
(1) $1 . \pm \sqrt{3}$
(2) $(1,0)$
(3) $1, \pm 2$
(4) $(1 . \pm \sqrt{2})$
95. The point at which tangent to the curve $y=\tau \tau^{2 x}$ at the point $(0,1)$ meets the x-axis is :
(1) $(1,0)$
(2) $(-1 / 2,0)$
(3) $(2,0)$
(4) $(0,2)$
96. Maximum value of slope of a tangent to the curve $y=-x^{3}+3 x^{2}+2 x-27$ will be :
(1) 11
(2) -4
(3) 5
(4) 2
97. $m \frac{\sin \sqrt{\mathrm{X}}}{\sqrt{\mathrm{X}}} \mathrm{dx}$ is equal to :
(1) $-2 \cos \sqrt{\mathrm{x}}+\mathrm{C}$
(2) $2 \cos \sqrt{x}+C$
(3) $2 \sin \sqrt{\mathrm{x}}+\mathrm{C}$
(4) $\sin \sqrt{x}+C$
98. Correct statement is :
(1) $(A B)^{-1}=B^{-1} A^{-1}$
(2) $(A B)^{-1}=A^{-1} B^{-1}$
(3) $(A B)^{T}=A^{T} B^{T}$
(4) $(A B)^{-1}=A^{-1} B^{-1}$
99. If the matrix $P=\left[\begin{array}{cc}1 & 2 \\ \text { statement is : } & 0\end{array}\right) \quad$ and $Q=\left[\begin{array}{cc}-1 & 0 \\ 2 & 3\end{array}\right] \quad$ then the correct
(1) $P+Q=I$
(2) $P Q \neq Q P$
(3) $Q^{2}=Q$
(4) $P^{2}=P$

ANSWER SHEET

$1 .(1)$	$2 .(4)$	$3 .(4)$	$4 .(4)$	$5 .(4)$	$6 .(3)$	$7 .(2)$	$8 .(4)$	$9 .(1)$	$10 .(3)$	$11 .(2)$
$12 .(2)$	$13 .(4)$	$14 .(2)$	$15 .(4)$	$16 .(4)$	$17 .(2)$	$18 .(1)$	$19 .(3)$	$20 .(1)$	$21 .(4)$	$22 .(2)$
$23 .(2)$	$24 .(2)$	$25 .(3)$	$26 .(2)$	$27 .(3)$	$28 .(3)$	$29 .(4)$	$30 .(3)$	$31 .(2)$	$32 .(4)$	$33 .(2)$
$34 .(4)$	$35 .(2)$	$36 .(2)$	$37 .(3)$	$38 .(1)$	$39 .(2)$	$40 .(3)$	$41 .(3)$	$42 .(4)$	$43 .(2)$	$44 .(4)$
$45 .(3)$	$46 .(4)$	$47 .(2)$	$48 .(4)$	$49 .(1)$	$50 .(4)$	$51 .(2)$	$52 .(1)$	$53 .(2)$	$54 .(4)$	$55 .(2)$
$56 .(4)$	$57 .(1)$	$58 .(4)$	$59 .(2)$	$60 .(3)$	$61 .(3)$	$62 .(3)$	$63 .(4)$	$64 .(4)$	$65 .(4)$	$66 .(2)$
$67 .(3)$	$68 .(2)$	$69 .(2)$	$70 .(3)$	$71 .(2)$	$72 .(3)$	$73 .(1)$	$74 .(2)$	$75 .(3)$	$76 .(3)$	$77 .(3)$
$78 .(3)$	$79 .(3)$	$80 .(4)$	$81 .(1)$	$82 .(1)$	$83 .(4)$	$84 .(4)$	$85 .(1)$	$86 .(3)$	$87 .(4)$	$88 .(4)$
$89 .(3)$	$90 .(4)$	$91 .(4)$	$92 .(3)$	$93 .(4)$	$94 .(3)$	$95 .(2)$	$96 .(3)$	$97 .(1)$	$98 .(1)$	$99 .(2)$

1. The field at distance r from the center of a charge conducting sphere of radius R and charge Q is given by the expression $(r<R)$:
(1) $\frac{\mathrm{KQ}}{\mathrm{r}^{2}}$
(2) $\frac{\mathrm{KQ}}{\mathrm{R}^{2}}$
(3) $\frac{K Q R}{R^{2}}$
(4) zero
2. An electron of $\mathbf{1 0} \mathbf{e V}$ kinetic energy will travel the distance through an electric field $0.25 \mathrm{~N} / \mathrm{C}$:
(1) 2.5 m
(2) 20 m
(3) 4 m
(4) 40 m
3. The length of potentiometer wire is 10 cm . and resistance is $0.005 \Omega \delta \mathrm{~m}$. A battery of 2 Volt enf and 1.5Ω sinternal resistance is connected to the wire will be:
(1) $4 \times 10^{-4} \mathrm{v} / \mathrm{cm}$.
(2) $0.05 \mathrm{v} / \mathrm{cm}$.
(3) $0.5 \mathrm{v} / \mathrm{cm}$.
(4) $0.005 \mathrm{v} / \mathrm{cm}$.
4. Two coils are placed very near to each other. If the current in primary coil is I $=I 0 \sin \omega$ tuand coefficient of mutual induction is M, the induced emf in secondary coil will be :
(1) $E=\frac{I_{0} \omega \cos \omega t}{M}$
(2) $\mathrm{E}=\frac{\mathrm{I}_{0} \underline{\omega \cos \omega \mathrm{t}}}{\mathrm{M}}$
(3) $\mathrm{E}=\underline{\mathrm{MI}}_{0} \underline{\omega \cos \omega \mathrm{t}}$
(4) $\mathrm{E}=-\mathrm{MI}_{\underline{0}} \underline{\omega \cos \omega \mathrm{t}}$
5. Choke coil is :
(1) induction coil of high resistance and high inductance
(2) induction coil of high resistance and low inductance
(3) induction coil of low resistance and high inductance
(4) induction coil of low resistance and low inductance
6. The voltage difference between P and Q is :

Q
(1) 2 volt
(2) 1 volt
(3) -1 volt
(4) -2 volt
7. In the circuit current in 8Ω Qesistance is :

(1) 2 amp .
(2) 1 amp .
(3) 0.5 amp .
(4) 1.25 amp .
8. Which is correct for inside charged sphere :
(1) $\mathrm{E} \neq 0, \mathrm{~V}=0$
(2) $\mathrm{E}=0, \mathrm{~V}=0$
(3) $\mathrm{E} \neq 0, \mathrm{~V} \neq 0$
(4) $\mathrm{E}=0, \mathrm{~V}=0$
9. The magnetic force experienced charge q in magnetic field moving with velocity V, will maximum when the angle between V and B is :
(1) 0^{0}
(2) 45^{0}
(3) 90°
(4) 180°
10. A parallel plate condenser is charged with a battery. After changing of the condenser battery is removed and two plates are separated from each other with the help of insulating handles, than :
(1) capacitance decreases
(2) capacitance increases
(3) charge on plates increases
(4) voltage between plates increase
11. The electrical flux from a semi spherical will be :

(1) $\pi R^{2} E$
(2) $\frac{4}{3} \pi R^{2} E$
(3) $2 \pi R^{2} E$
(4) $2 \pi \mathrm{RE}$
12. In closed organ pipe the produced harmonics are :
(1) no harmonics is produced
(2) even and odd both
(3) odd only
(4) even only
13. In this wave equation $Y=5 \sin 2 \pi t(4 t-0.02 x)$ the wave velocity of wave is :
(1) $50 \mathrm{~m} / \mathrm{sec}$.
(2) $150 \mathrm{~m} / \mathrm{sec}$.
(3) $200 \mathrm{~m} / \mathrm{sec}$.
(4) $100 \mathrm{~m} / \mathrm{sec}$.
14. Light velocity in vacuum depends upon :
(1) wavelength
(2) frequency
(3) intensity
(4) none of these
15. In a coil the current changes from 2 A to $4 \mathrm{~A}, 0.05 \mathrm{sec}$. and the induced enf is 8 volt, the coefficient of self induction will be :
(1) 8 H
(2) 0.02 H
(3) 0.2 H
(4) 0.8 H
16. The resistance of a galvanometer is 100Ω תnd maximum current which can pass through it 0.001 A . The value of shunt to change this galvanometer into voltmeter of 12 volt range will be :
(1) $12,100 \Omega$
(2) $11,900 \Omega$
(3) 1190Ω
(4) $11,990 \Omega$
17. The $A C$ voltage is given by the equation $E=E_{0} \sin \omega d$, if an inductance is connected in the circuit the RMS value of voltage in the circuit will be:
(1) $\mathrm{E}_{\mathrm{rms}}=\underline{E}_{0}^{2}$
(2) $\mathrm{E}_{\mathrm{rms}}=\frac{\mathrm{E}_{0}}{\sqrt{2}}$
(3) Erms $=\mathrm{E}_{0}$
(4) $\mathrm{Erms}=\sqrt{2} \mathrm{E}_{0}$
18. In wattles current phase difference between current and voltage is :
(1) $\pi / 4$
(2) $\pi / 2$
(3) π
(4) zero
19. The ionization potential of hydrogen is 13.6 eV . The total energy of an electron in its third orbit will be :
(1) 3.4 eV
(2) -3.4 eV
(3) 1.5 eV
(4) -1.5 eV
20. In radioactive dis-integration the element shift by one place further after the emission of the particle :
(1) α-particle
(2) β-particle
(3) γ-particle
(4) α, β and γ all
21. A metal surface emitted electrons of 3 eV , when a light of 4 eV are made to incident on the same metal surface the energy of the emitted photons will be :
(1) 3 eV
(2) 4 eV
(3) 5 eV
(4) 2 eV
22. If for an electron $m_{e}=10^{-31} \mathrm{~kg}$., velocity is $10^{5} \mathrm{~m} / \mathrm{s}$., $h=10^{-34}$, the uncertainty in the position of electron will be of the order of :
(1) $10^{-4} \mathrm{~m}$
(2) $10^{-8} \mathrm{~m}$
(3) $10^{-6} \mathrm{~m}$
(4) $10^{-8} \mathrm{~m}$
23. Forbidden energy gap in Ge is :
(1) 0.75 eV
(2) 2.5 eV
(3) 1.1 eV
(4) 5 eV
24. A rod of length L and mass M is suspended from its one end and execute oscillations the time period of vibrations will be :
(1) $\mathrm{T}=2 \pi \sqrt{\frac{2 \mathrm{~L}}{\mathrm{~g}}}$
(2) $\mathrm{T}=2 \pi \frac{\sqrt{\overline{\mathrm{~L}}}}{\mathrm{~g}}$
(3) $\mathrm{T}=2 \pi \frac{\sqrt{1 \mathrm{~L}}}{2 \mathrm{~g}}$
(4) $\mathrm{T}=2 \pi \frac{\sqrt{2 \mathrm{~L}}}{3 \mathrm{~g}}$
25. Two masses m_{1} and m_{2} are attached to the ends of a string by a weight loss rod of length \mathbf{r}_{0}. The MI of this system about the axis passing through the center of mass and perpendicular to its length will be :

$$
\left(\mu 0=\frac{\underline{m}_{1} \underline{m_{2}}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)
$$

(1) $\mu_{0} r_{0}^{2}$
(2) $\mu_{0} r$
(3) $\mu_{0} r^{2}$
(4) $\mu_{1} r_{0}^{2}$
26. The energy of monatomic gas is :
(1) only rotational
(2) only vibrational
(3) only translatory
(4) all the above
27. The work done in increasing the size of a bubble by $10^{-2} \mathrm{~m}^{2}(\mathrm{~T}=25$ dyne 1 cm .)
(1) $0.4 \times 10^{-4} \mathrm{erg}$
(2) 50×10^{2} erg
(3) $25 \times 10^{2} \mathrm{erg}$
(4) $25 \times 10^{-2} \mathrm{erg}$
28. A geostationary satellite is at a distance of $\mathbf{8}$ Re revolving around the earth and another satellite is revolving round the earth at 3.5 Re distance, its revolution period will be:
(1) 8.5 hrs .
92) 16.5 hrs .
(3) 18 hrs .
(4) 12 hrs .
29. The work done per unit extension in length of a wire will be ($L=$ length, $A=$ area of cross section) :
(1) $\frac{\mathrm{YL}^{2}}{2 \mathrm{~A}}$
(2) $\frac{\mathrm{YA}}{2 \mathrm{~L}^{2}}$
(3) $\frac{\mathrm{YA}}{2 \mathrm{~L}}$
(4) $\frac{\mathrm{YL}}{2 \mathrm{~A}}$
30. The total energy of a body at distance r from the earth will be :
(1) $-\frac{\mathrm{Gm}}{\mathrm{r}} \underline{\underline{m}}$
(2) $-\frac{\mathrm{Gm}_{\mathrm{m}} \mathrm{m}}{2 \mathrm{r}}$
(3) $\frac{G m_{\underline{m}} \underline{m}}{2 r}$
(4) $\frac{\mathrm{Gm}}{\mathrm{r}} \underline{\underline{m}}$
31. The kinetic energy of a particle executing SHM is changed by frequency f, the frequency of its motion will be :
32. A body of mass m is projected at an angle 45° with velocity v from the horizontal the angular momentum acceleration at the heighest point of he motion will be :
(1) mv
(2) $\frac{m v^{2}}{4 g}$
(3) $\frac{\mathrm{mv}^{3}}{4 \sqrt{2 g}}$
(4) $\frac{\mathrm{mv}}{2}$
33. The mass of bob of simple pendulum is m. This bob is life by ehight h and than set free; the work done in displacement of the bob from one end to another will be :
(1) 2 mgh
(2) $\frac{1 \mathrm{mgh}}{2}$
(3) mgh
(4) zero
34. A boy is revolving on a dice with spreading hands. Suddenly the boy brings his near his body, the change in the system will be :
(1) angular velocity increases
(2) angular velocity decreases
(3) angular velocity unchanged
(4) angular momentum decreases
35. A body moving with $50 \mathrm{~m} / \mathrm{sec}$. Velocity collides elastically with another body at rest. After the collision the velocity of first body changes to $30 \mathrm{~m} / \mathrm{sec}$., the velocity of the second body will be:
(1) $30 \mathrm{~m} / \mathrm{sec}$.
(2) $60 \mathrm{~m} / \mathrm{sec}$.
(3) $80 \mathrm{~m} / \mathrm{sec}$.
(4) $50 \mathrm{~m} / \mathrm{sec}$.
36. The radius of a circular aperture is variable. The light of $\lambda \lambda$ wavelength is made to incident on the aperture a screen is placed at distance b from the aperture. When one increases the radius of the aperture, the value of the radius of aperture for which second time dark point will be obtained on the screen will be :
(1) $\sqrt{b \lambda}$
(2) $\sqrt{3 b \lambda}$
(3) $\sqrt{4 \mathrm{~b} \lambda}$
(4) $\sqrt{2 \mathrm{nb} \lambda}$
37. The length of a sonometer wire is τ and tension T and frequency is n. If the length and tension on sonometer wire are doubled the frequency will become :
(1) $2 n$
(2) $\frac{n}{2}$
(3) $\sqrt{2 n}$
(4) $\frac{\mathrm{n}}{\sqrt{2}}$
38. Two forks of approximately equal frequencies are used to produce Lissajou figures. If the Lissajous figure changes its shape once in 1 sec . If the frequency of one of the tuning fork is 1000 Hz , the frequency of second fork will be :
(1) 1000 Hz
(2) 1002 Hz
(3) 2000 Hz
(4) 1001 Hz
39. Fundamental frequency of an open pipe is:
(1) 15 Hz
(2) 20 Hz
(3) 30 Hz
94) 10 Hz
40. If charge Q is placed at the center of a cube, the emergent flux from one of the face of the cube will be:
(1) \underline{Q}
$2 \varepsilon_{0}$
(2) \underline{Q}
$3 \varepsilon_{0}$
(3) $\frac{Q}{6 \varepsilon_{0}}$
(4) \underline{Q}
ε_{0}
41. Two equal charges each of value q are placed on a straight line, another charge Q is placed at mid of the distance between the system will be most stable is :
(1) $+\frac{q}{2}$
(2) $-\frac{q}{2}$
$(3)+q$
(4) -q
42. An electron passes through an electric field $3200 \mathrm{v} / \mathrm{m}$. of length 0.1 m . with speed $4 \times 10^{7} \mathrm{~m} / \mathrm{sec}$. The deflection produced in the path of electron will be :
(1) 3.52 mm .
(2) 1.35 mm .
(3) 0.88 mm .
(4) 1.76 mm .
43. A rectangular coil placed in a magnetic field 0.25 T . The area of coil is 96×10 4 m 2 , no. of turns are 50 and current is 2 A , the torque experienced by the coil will be:

(1) $0.24 \mathrm{~N}-\mathrm{m}$.
(2) $0.48 \mathrm{~N}-\mathrm{m}$.
(3) $0.36 \mathrm{~N}-\mathrm{m}$. (4) $0.96 \mathrm{~N}-\mathrm{m}$.
44. If two charged conductors are short circuited by a wire, the current will now flow:
(1) sizes are equal
(2) capacitances are equal
(3) charges are equal
(4) potential are equal
45. Two coils X and Y are placed near to other according to the figure. If current is passed through X, the direction of induced current in Y will be:

(1) carit be determined
(2) no current induce
(3) Q to P
(4) P to Q
46. Which quantity doesn't remains constant in simple harmonic motion :
(1) time period
(2) velocity
(3) frequency
(4) amplitude
47. A pot filled with water is revolved in the circular path of radius R, the minimum velocity at which the water will not come out of the pot will be :
(1) gR
(2) $\sqrt{2 \mathrm{gR}}$
(3) $\sqrt{\mathrm{Rg}}$
(4) $\sqrt{5 \mathrm{gr}}$
48. A spring is extended by ulength, then the force is :
(1) $F=\frac{k}{l}$
(2) $\mathrm{F}=\mathrm{kt}$
(3) $F=\frac{k}{l^{2}}$
(4) $F=\underline{k}^{2}$
49. The velocity at which a body will escape from the earth surface is $\left(M_{e}=\right.$ mass of earth $R_{e}=$ radius of earth) :
(1) $\mathrm{V} \leq \sqrt{\frac{2 \mathrm{GM}_{e}}{\mathrm{R}_{\mathrm{e}}}}$
(2) $\mathrm{V} \geq \frac{{\sqrt{2 \mathrm{GM}_{\mathrm{e}}}}_{\mathrm{R}_{\mathrm{e}}}}{}$
(3) $V \leq \sqrt{\mathrm{GM}_{\mathrm{e}}} \underline{\mathrm{R}}_{\mathrm{e}}$
(4) $\mathrm{V} \geq \frac{\sqrt{\mathrm{GM}_{\mathrm{e}}}}{\mathrm{R}_{\mathrm{e}}}$
50. The initial temperature of a gas is $27^{0} \mathrm{C}$. The gas is compressed adiabatically to $1 / 9^{\text {th }}$ of its initial volume, the final temp. of the gas will :
(1) $627^{0} \mathrm{~K}$
(2) $627^{\circ} \mathrm{C}$
(3) $727^{\circ} \mathrm{C}$
(4) $900^{\circ} \mathrm{C}$
51. The workdone in expanding a gas from $10 \mathrm{~m}^{3}$ to $20 \mathrm{~m}^{3}$ at one atmospheric pressure will be :
(1) $10^{6} \mathrm{~J}$
(2) $10^{3} \mathrm{~J}$
(3) $10^{2} \mathrm{~J}$
(4) $10^{5} \mathrm{~J}$
52. The mean kinetic energy of the molecule at a given temp. will be max. for :
(1) Hydgrogen
(2) Oxygen
(3) Helium
(4) Equal for all
53. Kind of bonding in $\mathbf{H}_{\mathbf{2}}$ is :
(1) covalent
(2) vander waals
(3) ionic
(4) metallic
54. The density of iron is $7 \times 10^{3} \mathrm{k} / \mathrm{m}^{3}$ and breaking stress is $7.9 \times 10^{8} \mathrm{~N} / \mathrm{m} 2$, the max, length of the wire which will unable to break the wire from its own weight will be:
(1) $10^{5} \mathrm{M}$
(2) $10^{3} \mathrm{M}$
(3) $10^{4} \mathrm{M}$
(4) $10^{2} \mathrm{M}$
55. Four bodies solid sphere, solid cylinder, disc and ring have same mass and same cross sectional area, the MI about the axis shown by a point in the figure will be max. for the body (the axis is perpendicular to the plane of the bodies) :
\uparrow
$2 r$
\downarrow

(1) only disc
(2) sphere and ring
(3) disc and cylinder
(4) only ring
56. A cylinder rools down the inclined plane of length 0.15 m . If the mass of cylinder is 0.1 kg . The velocity at the bottom of the inclined plane will be:
(1) $3.5 \mathrm{~m} / \mathrm{sec}$.
(2) $2 \mathrm{~m} / \mathrm{sec}$.
(3) $1.4 \mathrm{~m} / \mathrm{sec}$.
(4) $2.4 \mathrm{~m} / \mathrm{sec}$.
57. A stopper is attached in the middle of glass tube. Two bubbles of radius 2 cm . and $\mathbf{4} \mathbf{~ c m}$. are formed at the end of the glass tube. If one opens the stopper :
(1) small bubble will reduce and large will increase
(2) both will increase
(3) both will reduce
(4) small will increase and large will reduce
58. A $500 \mu \mathbb{F}$ capacitor is charged with a battery of 100 volt and it is discharged through 10Ω gesistance the heat produced in resistance will be:
(1) 1.25 J
(2) 5 J
(3) 10 J
(4) 2.5 J
59. Two condensers of $1 \mu \AA$ are connected in series with a battery of 6 volt, the total charge on condensers will be :
(1) $2 \mu \mathrm{C}$
(2) $2.5 \mu \mathrm{C}$
(3) $9 \mu \mathrm{C}$
(4) $4 \mu \mathrm{C}$
60. Transformer changes :
(1) DC current
(2) DC voltage
(3) AC voltage
(4) AC \& DC voltage
61. Lenzis law is based upon :
(1) law of conservation of energy
(2) law of conservation of angular momentum
(3) law of conservation of momentum
(4) law of conservation of charge
62. Two thin wires are separated by distance r and parallel to each other. If the current in each wire is I, the force per unit length experienced by one wire due to current in the other will be :
(1) $\mu_{0} \frac{I^{2}}{2}$
(2) $\underline{\mu}_{\underline{0}} \underline{I^{2}}$
(3) $\underline{\mu}_{0} \underline{I}$
(4) $\frac{\mu_{0}}{2 \pi r}$
63. The relation between current and maximum current I_{m} at half power points in resonant circuit will be :
(1) $I=\frac{I_{m}}{2 \sqrt{2}}$
(2) $I=I_{m} \sqrt{2}$
(3) $I=\underline{I_{m}}$
(4) $I=\frac{I_{m}}{\sqrt{2}}$
64. In LCR circuit the voltage and current are given by the equations: $\mathrm{E}=\mathrm{E}_{0}$ sin ω tuand $I=I_{0}(\omega t 0-\phi \phi$ than which statement is correct :
(1) $\cos \phi=$

$$
\frac{\mathrm{R}}{\left(\omega \mathrm{~L}-\frac{1}{\mathrm{C} \omega}\right)}
$$

(2) $\sin \phi=\frac{\left(\omega \mathrm{L}-\frac{1}{\mathrm{C} \omega}\right)}{\mathrm{R}}$
(3) $\tan \phi=\frac{\left(\mathrm{L}-\frac{1}{\mathrm{C} \omega}\right]}{\mathrm{R}}$
(4) $\tan \phi=\frac{\omega L}{R}$
65. The potential due to electric dipole a point is :
(1) $K\left[\begin{array}{l}\vec{p}+\vec{r} \\ r^{3}\end{array}\right]$
(2) $K\binom{\vec{p}+\vec{r}}{r^{3}}$
(3) $K\left(\frac{\vec{p}-\vec{r}}{r^{3}}\right)$
(4) $K\left(\frac{\vec{p} \cdot \vec{r}}{\mathrm{r}^{3}}\right)$
66. The magnetic field due to a current carrying wire element will be maximum when the angle between the current element and position vector is :
(1) $\pi / 2$
(2) $\pi / 4$
(3) π
(4) zero
67. A straight current carrying wire and loop are placed according to the figure. If the current is according to the figure :

(1) loop will move towards the wire
(2) loop will move away from the wire
(3) loop will rotate around the wire
(4) no change
68. The rate of heat produced in resistance of $10 \Omega \delta$ a.c. circuit is 250 watt per sec. the current in the resistance will be :
(1) 0.5 amp .
(2) 2.5 amp .
(3) 5 amp .
(4) 1.25 amp .
69. The mean life of a radioactive substance is equal to :
(1) $\frac{1}{\sqrt{\lambda}}$
(2) $\sqrt{\lambda}$
(3) $\frac{1}{\lambda}$
(4) λ
70. The half life of a radioactive substance is 25 days. The 25 gm . sample of this substance will reduce is $\mathbf{1 5 0}$ days to :
(1) 0.375 gm .
(2) 0.75 gm .
(3) 1.5 gm .
(4) 4 gm .
71. The wavelengths associated with photons and electron are same, the ratio of their momentum will be :
(1) $1: 1$
(2) $2: 1$
(3) $1: 3$
(4) $1: 3$
72. Work function for a surface is equal to :
(1) $\phi=$ fermi energy - binding energy
(2) $\phi=$ fremi energy
(3) $\phi=$ binding energy - fermi energy
(4) $\phi=$ binding energy
73. If the pressure of a gas is doubled at constant temperature, then the velocity of sound in the gas becomes :
(1) unchanged
(2) $\sqrt{2}$ times
(3) half
(4) double
74. In black body radiations for maximum emission the wavelength $\lambda_{\lambda_{i}}$ shifted with increase of temperature of black body :
(1) at some temp. towards shorter side and others towards longer side
(2) towards higher wavelength
(3) towards shorter wavelength
(4) no shift
75. If the temp. of a body is make amount of radiated energy will become :
(1) 16 times
(2) half
(3) two times
(4) four times
76. If light ray is reflected from the denser medium, the path difference produced in the reflected ray will be :
(1) $\lambda / 4$
(2) $\lambda / 2$
(3) λ
(4) zero
77. The one mole of an ideal gas is compressed adiabatically from temp. $27^{\circ} \mathrm{C}$ to

1020 C the work done in the process will be : $(\mathrm{r}=1.5)$
(1) 1000.25 J
(2) - 1245 J
(3) -928.75 J
(4) -622.5 J
78. The absence of atmosphere on the surface of any planet is :
(1) $\mathrm{V}_{\mathrm{rms}}$ is greater than escape velocity
(2) Average kinetic energy gas molecules is negligible to the gravitational force on the planet
(3) $\mathrm{V}_{\mathrm{rms}}$ less than escape velocity
(4) None
79. In a closed container the mass of molecule is $3 \times 10^{-27} \mathbf{k g}$. and velocity of molecule is $\mathbf{1 0} \mathbf{~ m} / \mathrm{sec}$. If the no. of molecules in the container is $\mathbf{1 0}^{\mathbf{2 4}}$, the pressure will be :
(1) $100 \mathrm{~N} / \mathrm{m}^{2}$
(2) $10 \mathrm{~N} / \mathrm{m}^{2}$
(3) $1 \mathrm{~N} / \mathrm{m}^{2}$
(4) $0.5 \mathrm{~N} / \mathrm{m}^{2}$
80. The heat given a system is ΔQ and change in internal energy of system is du and if work done is ΔW, the correct relation between all three quantities :
(1) $\Delta \mathrm{Q}=\Delta \mathrm{W}-\mathrm{dU}$
(2) $\mathrm{dU}=\Delta \mathrm{Q}-\Delta \mathrm{W}$
(3) $\Delta W=\Delta Q+d U$
(4) $\Delta W=\Delta Q-d U$
81. Absorption coefficient of an ideal blackbody is :
(1) less then 1
(2) 1
(3) zero
(4) infinity
82. The $V^{\text {rms }}$ of O 2 at $27^{0} \mathrm{C}$ is V on the same temp. the Vrms of atomic oxygen is V^{\prime} than:
(1) $\mathrm{V}^{\prime}=\frac{\mathrm{V}}{2}$
(2) $V^{\prime}=\frac{V}{\sqrt{2}}$
(3) $\mathrm{V}^{\prime}=\frac{\mathrm{V}}{2}$
(4) $V^{\prime}=\sqrt{2 V}$
83. If one gm. of water at 1000 C converted into vapour of 1000 C the external work done in this process will be :
(1) 2100 watt
(2) 2100 erg
(3) 2100 J
(4) 2100 cal
84. Of which the velocity is equal to light velocity :
(1) cathode ray
(2) X-rays
(3) positive ray
(4) all
85. In young double slit experiment the two coherent sources are separated by 2 $\mathbf{m m}$. the distance of screen is $\mathbf{1 m}$. If the fringe width is $\mathbf{0 . 0 3} \mathbf{~ c m}$. the wavelength of light will be:
(1) $6000 \AA$
(2) $5890 \AA$
(3) $5000 \AA$
(4) $4000 \AA$
86. The horns of two cars emit the sound of natural frequency 240 Hz . One of the car is moving towards one observer with velocity $4 \mathrm{~m} / \mathrm{sec}$. and the other car is moving away from the observer with the same velocity. The no. of beat heard by the observer will be ($V_{\text {air }}=320 \mathrm{~m} / \mathrm{sec}$.) :
87. The max. value of magnetic field in a electric field $3.2 \times 10^{-4} \mathrm{v} / \mathrm{m}$ (max. value) :
(1) $0.94 \times 10^{-14} \mathrm{~T}$
(2) $0.94 \times 10^{10} \mathrm{~T}$
(3) $1.07 \times 10^{-12} \mathrm{~T}$
(4) $1.07 \times 10^{-9} \mathrm{~T}$
88. 1 amu is equal to :
89.1 amp . current flow is a circuit when a cellisconnected to 1Ω Qesistance and 0.5 amp. to a 3Ω gesistance. The internal resistance of cell is :
(1) 2Ω
(2) 1.0Ω
(3) 1.5Ω
(4) 0.5Ω
90. Function of a grid in a triode is :
(1) to increase plate voltage
(2) to decrease plate voltage
(3) to reduce the effect of space charge
(4) None
91. If $r_{p}=3 \times 10^{3} \Omega \Omega$ nd $g_{m}=20 \mathrm{~m}$. mho if triode is used as an amplifier and $R_{L}=6$ $\mathrm{k} \Omega$ gthen voltage amplification is :
(1) 40
(2) 60
(3) 20
(4) 30
92. Ge at absolute temp is a :
(1) super cond.
(2) conductor
(3) semi conductor
(4) insulator

ANSWER SHEET

$1 .(4)$	$2 .(4)$	$3 .(4)$	$4 .(4)$	$5 .(3)$	$6 .(2)$	$7 .(3)$	$8 .(4)$	$9 .(3)$	$10 .(1)$	$11 .(1)$
$12 .(3)$	$13 .(3)$	$14 .(4)$	$15 .(3)$	$16 .(2)$	$17 .(2)$	$18 .(2)$	$19 .(4)$	$20 .(2)$	$21 .(3)$	$22 .(2)$
$23 .(1)$	$24 .(4)$	$25 .(3)$	$26 .(3)$	$27 .(2)$	$28 .(2)$	$29 .(1)$	$30 .(2)$	$31 .(1)$	$32 .(3)$	$33 .(4)$
$34 .(1)$	$35 .(3)$	$36 .(3)$	$37 .(4)$	$38 .(4)$	$39 .(1)$	$40 .(3)$	$41 .(4)$	$42 .(4)$	$43 .(1)$	$44 .(4)$
$45 .(3)$	$46 .(2)$	$47 .(4)$	$48 .(2)$	$49 .(2)$	$50 .(2)$	$51 .(1)$	$52 .(4)$	$53 .(2)$	$54 .(3)$	$55 .(1)$
$56 .(3)$	$57 .(1)$	$58 .(4)$	$59 .(1)$	$60 .(3)$	$61 .(1)$	$62 .(4)$	$63 .(4)$	$64 .(3)$	$65 .(4)$	$66 .(1)$
$67 .(2)$	$68 .(3)$	$69 .(3)$	$70 .(1)$	$71 .(1)$	$72 .(4)$	$73 .(1)$	$74 .(3)$	$75 .(1)$	$76 .(2)$	$77 .(2)$
$78 .(1)$	$79 .(3)$	$80 .(4)$	$81 .(2)$	$82 .(4)$	$83 .(3)$	$84 .(2)$	$85 .(1)$	$86 .(2)$	$87 .(3)$	$88 .(1)$
$89 .(2)$	$90 .(1)$	$91 .(1)$	$92 .(4)$							

